Issue 4

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 1, Issue 4, December 2015, Pages 5–8

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

Studying of phylogenetic relationships of leukemia virus with other retroviruses in cattle

Limanskaya O. Yu., Gema I. A., Gorbatenko S. K., Gerilovych A. P.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail:

Download PDF (print version)

Citation for print version: Limanskaya, O. Yu., Gema, I. A., Gorbatenko, S. K. and Gerilovych, A. P. (2015) ‘Studying of phylogenetic relationships of leukemia virus with other retroviruses in cattle’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 1(4), pp. 5–8.

Download PDF (online version)

Citation for online version: Limanskaya, O. Yu., Gema, I. A., Gorbatenko, S. K. and Gerilovych, A. P. (2015) ‘Studying of phylogenetic relationships of leukemia virus with other retroviruses in cattle’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 1(4), pp. 5–8. Available at:

Summary. Bovine leukemia virus (BLV) is one of the retroviruses, which genetically, structurally and functionally related to viruses of human T-cell leukemia. BLV is a very convenient model for studying the pathogenesis of human leukemia. Genomes of retroviruses have high variability levels due to lack of a mechanism of correct errors that occur when copying matrix during replication, and possible genetic recombination. In this regard, the study of the genetic variability of the virus is one of the major objectively for biological monitoring. At this time, molecular genetic analysis (polymerase chain reaction (PCR)) is a necessary part of phylogenetic research. The aim of this work was to study the variability of the bovine leukemia virus, to establish phylogenetic relationships between isolates sequenced bovine leukemia virus, which circulates in farms of different regions in Ukraine, with other animals retroviruses. The sampling of clinical material from cattle farms was conducted in different geographical regions in Ukraine and extracted proviral BLV DNA. Totally 831 samples of peripheral blood were collected and tested from cattle farms in Kharkiv region, 10 samples — Kirovohrad region; 10 samples — Donetsk region; 41 samples — Crimea, Simferopol region; 10 — samples of Poltava region. Sequenced fragments of env gene of bovine leukemia virus proviral DNA, circulating in different geographical regions in Ukraine were analyzed. Established isolates of bovine leukemia virus, circulating in Ukraine, belonging to the Euro-Asian subtype. Proved genetic affinity of leukemia virus and bovine syncytial virus, Jembrana disease virus and bovine immunodeficiency virus.

Keywords: DNA, phylogeographic relationships, polymerase chain reaction, sequencing, retroviruses, virus bovine leukemia


Caraguel, C., Stryhn, H., Gagne, N., Dohoo, I. and Hammell, L. (2009) ‘Traditional descriptive analysis and novel visual representation of diagnostic repeatability and reproducibility: Application to an infectious salmon anaemia virus RT-PCR assay’, Preventive Veterinary Medicine, 92(1–2), pp. 9–19. doi:

Chang, Z., Jin, M., Liu, N., Xie, H., Cui, S., Zhang, Q. and Duan, Z. (2009) ‘Analysis of epidemiologic feature and genetic sequence of Sapovirus in China’, Chinese Journal of Virology, 25(2), pp. 113–116. doi:

Darlix, J.-L. and Spahr, P.-F. (1983) ‘High spontaneous mutation rate of Rons sarcoma virus demonstrated by direct sequencing of the RNA genome’, Nucleic Acids Research, 11(17), pp. 5953–5967. doi:

Dube, S., Bachman, S., Poiesz, B. J., Ferrer, J. F., Esteban, E., Choi, D., Love, J. and Spicer, T. (1997) ‘Degenerate and specific PCR assays for the detection of bovine leukaemia virus and primate T cell leukaemia/lymphoma virus pol DNA and RNA: Phylogenetic comparisons of amplified sequences from cattle and primates from around the world’, Journal of General Virology, 78(6), pp. 1389–1398. doi:

Giammarioli, M., Pellegrini, C., Casciari, C., Rossi, E. and De Mario, G. M. (2008) ‘Genetic diversity of bovine viral diarrhea virus 1: Italian isolates clustered in at least seven subgenotypes’, Journal of Veterinary Diagnostic Investigation, 20(6), pp. 783–788. doi:

Katz, R. A. and Skalka, A. M. (1990) ‘Generation of diversity in retroviruses’, Annual Review of Genetics, 24(1), pp. 409–443. doi:

Licursi, M., Inoshima, Y., Wu, D., Yokoyama, T., Gonzalez, E. T. and Sentsui, H. (2003) ‘Provirus variants of bovine leukemia virus in naturally infected cattle from Argentina and Japan’, Veterinary Microbiology, 96(1), pp. 17–23. doi:

Manini, P., De Palma, G. and Mutti, A. (2007) ‘Exposure assessment at the workplace: Implications of biological variability’, Toxicology Letters, 168(3), pp. 210–218. doi:

Meyerhans, A., Cheynier, R., Albert, J., Seth, M., Kwok, S., Sninsky, J., Morfeldt-Manson, L., Asjo, B. and Wain-Hobson, S. (1989) ‘Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations’, Cell, 58(5), pp. 901–910. doi:

Milos, P. M. (2009) ‘Emergence of single-molecule sequencing and potential for molecular diagnostic applications’, Expert Review of Molecular Diagnostics, 9(7), pp. 659–666. doi:

Parvin, J. D., Moscona, A., Pan, W. T., Leider, J. M. and Palese, P. (1986) ‘Measurement of the mutation rates of animal viruses: Influenza A virus and poliovirus type 1’, Journal of Virology, 59(2), pp. 377–383. Available at:

Steinhauer, D. A. and Holland, J. J. (1987) ‘Rapid evolution of RNA viruses’, Annual Review of Microbiology, 41(1), pp. 409–431. doi:

Steinhauer, D. A., Torre, J. C. de la, Meier, E. and Holland, J. J. (1989) ‘Extreme heterogeneity in populations of vesicular stomatitis virus’, Journal of Virology, 63(5), pp. 2072–2080. Available at:

Wendel, J. F. and Doyle, J. J. (1998) Phylogenetic incongruence: Window into genome history and molecular evolution. In: Soltis, D. E., Soltis, P. S. and Doyle, J. J. Molecular Systematics of Plants II. Boston: Kluwer Academic Publishing. doi:

Willems, L., Thienpont, E., Kerkhofs, P., Burny, A. Mammerickx, M. and Kettmann, R. (1993) ‘Bovine leukemia virus, an animal model for the study of intrastrain variability’, Journal of Virology, 67(2), pp. 1086–1089. Available at: