Issue 1

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 2, Issue 1, May 2016, Pages 20–28

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)


Fedota O. M.

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, e-mail:

Ruban S. Yu.

Institute of Animal Breeding and Genetics nd. a. M. V. Zubets of NAAS, Chubynske, Ukraine

Lysenko N. G.*

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

Kolisnyk A. I.

PE ‘Agrofirma Svitanok’, Novoselivka, Ukraine

Goraichuk I. V.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine

Download PDF (print version)

Citation for print version: Fedota, O. M., Ruban, S. Yu., Lysenko, N. G., Kolisnyk, A. I. and Goraichuk, I. V. (2016) ‘SNPS of Calpain/Calpastatin system genes in commercial population of Aberdeen Angus in Kharkiv Region, Eastern Ukraine’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 2(1), pp. 20–28.

Download PDF (online version)

Citation for online version: Fedota, O. M., Ruban, S. Yu., Lysenko, N. G., Kolisnyk, A. I. and Goraichuk, I. V. (2016) ‘SNPS of Calpain/Calpastatin system genes in commercial population of Aberdeen Angus in Kharkiv Region, Eastern Ukraine’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 2(1), pp. 20–28. Available at:

Summary. The calpain proteolytic system — the micromolar calcium-activated neutral protease μ-calpain encoded by the CAPN1 gene, and its inhibitor — calpastatin — encoded by the CAST gene, is involved in biological processes regulation by partial degradation of substrates — cytoskeletal proteins, signaling molecules and enzymes. Calpain system dysfunction caused by mutations or Ca2+ elevation is associated primarily with diseases affecting central nervous and cardiovascular systems, as well as skeletal muscles. For cattle breeding purposes the calpain hyperactivity in the presence of excess calcium ions (calcium passes out due to cell death) is considered to be desirable offering the possibility to obtain more tender meat. This study is aimed to analyze the polymorphic variants CAPN316 and CAST282 of calpain and calpastatin genes in Aberdeen-Angus bred within Kharkiv region and to compare obtained result with commercial herds of other countries. For the SNP genotyping, PCR-RFLP methods were set up. Testing deviation from the Hardy-Weinberg equilibrium was performed using Pearson’s chi-squared test. Spearman’s correlation coefficient was used to measure the strength of association between two characteristics. Cluster analysis was used to classify the allele frequencies obtained within similar data obtained for cattle in other countries. The allele and genotype frequencies of SNP CAPN316 (AF252504.2:g.5709C>G) in calpain gene are: C — 0.398 and G — 0.602; CC — 13.6%, CG — 52.3% and GG — 34.1%. The allele and genotype frequencies of SNP CAST282 (AY_008267.1:g.282C>G) in calpastatin gene are: C — 0.807 and G — 0.193; CC — 63.6%, CG — 34.1% and GG — 2.3%. Group-to-group variability in allele C frequency for SNP CAPN316 (0.37%) is higher than CAST282 (0.06%), due to the modulating effect of the calpastatin. The Aberdeen-Angus herd of Kharkiv region are comparable to the European commercial beef cattle herds by allele frequencies. Association between latitudinal zonation and frequency of allele C in cattle herds was demonstrated (R = 0.53, p < 0.05).

Keywords: Aberdeen-Angus breed, calpain gene, calpastatin gene, SNP, meat tenderness


Avilés, C., Juárez, M., Peña, F., Domenech, V., Clemente, I. and Molina, A. (2013) ‘Association of single nucleotide polymorphisms in CAPN1 and CAST genes with beef tenderness from Spanish commercial feedlots’, Czech Journal of Animal Science, 58(10), pp. 479–487. Available at:

Barendse, W., Harrison, B. E., Hawken, R. J., Ferguson, D. M., Thompson, J. M., Thomas, M. B. and Bunch, R. J. (2007) ‘Epistasis between Calpain 1 and its inhibitor Calpastatin within breeds of cattle’, Genetics, 176(4), pp. 2601–2610.

Bolormaa, S., Hayes, B. J., van der Werf, J. H. J., Pethick, D., Goddard, M. E. and Daetwyler, H. D. (2016) ‘Detailed phenotyping identifies genes with pleiotropic effects on body composition’, BMC Genomics, 17(1), p. 224.

Carruthers, C. R. (2009) Comparison of Canadian and International Angus cattle populations using gene variants and microsatellites. A thesis submitted to the College of Graduate Studies and Research in partial fulfillment of the requirements for the Degree of Master of Science in the Department of Animal and Poultry Science of the University of Saskatchewan thesis. Saskatoon, SK, Canada. Available at:

Dobrianska, M. L., Dshus, P. P., Podoba, Y. V., Kopylov, K. V., Kopylova, K. V., Sydorenko, O. V. and Yudin, N. S. (2013) ‘Interpedigree differentiation in beef cattle by the frequencies of alleles and genotypes of calpain gene’ [Mezhporodnaia dyfferentsyatsyia miasnoho skota po chastotam allelei y henotypov hena kalpayna], Bulletin of Vavilov Society of Geneticists and Breeders of Ukraine [Visnyk Ukrainskoho tovarystva henetykiv i selektsioneriv], 11(1), pp. 53–57. Available at: [in Ukrainian]

Gill, J. L., Bishop, S. C., McCorquodale, C., Williams, J. L. and Wiener, P. (2009) ‘Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle’, Genetics Selection Evolution, 41(1), p. 36.

Goll, D. E., Thompson, V. F., Li, H., Wei, W. and Cong, J. (2003) ‘The Calpain system’, Physiological Reviews, 83(3), pp. 731–801.

Gomes, R. C., Silva, S. L., Carvalho, M. E., Rezende, F. M., Pinto, L. F. B., Santana, M. H. A., Stella, T. R., Meirelles, F. V., Rossi Júnior, P., Leme, P. R. and Ferraz, J. B. S. (2013) ‘Protein synthesis and degradation gene SNPs related to feed intake, feed efficiency, growth, and ultrasound carcass traits in Nellore cattle’, Genetics and Molecular Research, 12(3), pp. 2923–2936.

Grebinyk, D. M. (2012) ‘Calpain structural and distributional features as their classification basis’ [Strukturno-vydovi osoblyvosti kalpainiv yak osnova yikh klasyfikatsii], Physics of the Alive [Fizyka zhyvogo], 20(2), pp. 4–8. Available at: [in Ukrainian]

Juszczuk-Kubiak, E., Rosochacki, S. J., Wicińska, K., Szreder, T. and Sakowski, T. (2007) ‘A novel RFLP/AluI polymorphism of the bovine calpastatin (CAST) gene and its association with selected traits of beef’, Animal Science Papers and Reports, 22(2), pp. 195–204. Available at:

Khalafyan, A. A. (2007) STATISTICA 6. Statistical analysis of data: Guide [STATISTICA 6. Statisticheskiy analiz dannykh. Uchebnik]. Moscow: BINOM. Laboratoriya znaniy. ISBN 9785951802156. [in Russian]

Kaplanová, K., Dufek, A., Dračková, E., Simeonovová, J., Šubrt, J., Vrtková, I. and Dvořák, J. (2013) ‘The association of CAPN1, CAST, SCD, and FASN polymorphisms with beef quality traits in commercial crossbred cattle in the Czech Republic’, Czech Journal of Animal Science, 58(11), pp. 489–496. Available at:

Kök, S., Atalay, S., Savaşçi, M. and Eken, H. S. (2013) ‘Characterization of calpastatin gene in purebred and  crossbred Turkish grey steppe cattle’, Journal of the Faculty of Veterinary Medicine, University of Kafkas, 19(2), pp. 203–206.

Kolisnyk, A. I., Fedota, A. M., Ruban, S. Y., Lysenko, N. G. and Misiats, T. K. (2014) ‘Genealogical analysis of quantitative traits in Aberdeen-Angus’ [Genealogicheskiy analiz kolichestvennykh priznakov zhivotnykh Aberdin-Angusskoy porody], Bulletin of Vavilov Society of Geneticists and Breeders of Ukraine [Visnyk Ukrainskoho tovarystva henetykiv i selektsioneriv], 12(2), pp. 256–263. Available at: [in Russian]

Kosyan, D. B., Surundaeva, L. G., Maevskaya, L. A., Rusakova, E. A. and Kvan, O. V. (2012) ‘Using PCR for genotyping cattle CAPN1 the gene using genetic markers’ [Ispol’zovanie metoda PTSR dlya genotipirovaniya krupnogo rogatogo skota po genu CAPN1 s ispol’zovaniem geneticheskikh markerov], Bulletin of the Orenburg State University [Vestnik Orenburgskogo gosudarstvennogo universiteta], 6(142), pp. 26–30. Available at: [in Russian]

Leveau, C. (2008) Candidate genes for beef quality — allele frequencies in Swedish beef cattle. A thesis submitted to the Department of Animal Breeding and Genetics of the Department of Food Science of the Swedish University of Agricultural Sciences thesis. Uppsala, Sweden. Available at:

Li, X., Chen, H., Jeong, J.-J. and Chishti, A. H. (2007) ‘BDA-410: A novel synthetic calpain inhibitor active against blood stage malaria’, Molecular and Biochemical Parasitology, 155(1), pp. 26–32.

Miquel, M. C., Villarreal, E., Mezzadra, C., Melucci, L., Soria, L., Corva, P. and Schor, A. (2009) ‘The association of CAPN1 316 marker genotypes with growth and meat quality traits of steers finished on pasture’, Genetics and Molecular Biology, 32(3), pp. 491–496.

Nowak, D. (2011) ‘Enzymes in tenderization of meat — the system of calpains and other systems — a review’, Polish Journal of Food and Nutrition Sciences, 61(4), pp. 231–237.

Pinto, L. F. B., Ferraz, J. B. S., Meirelles, F. V., Eler, J. P., Rezende, F. M., Carvalho, M. E., Almeida, H. B. and Silva, R. C. G. (2010) ‘Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle’, Genetics and Molecular Research, 9(3), pp. 1431–1442.

Quaas, R. L., Li, J., Thallman, R. M., van Eenennaam, A. L., Fernando, R. L. and Gill, C. (2006) ‘Validation of commercial DNA tests for quantitative beef traits’, 8th World Congress on Genetics Applied to Livestock Production, 13–18 August, 2006, Belo Horizonte, Minas Gerais, Brazil. pp. 3–7. Available at:

Ribeca, C., Bittante, G., Albera, A., Bonfatti, V., Maretto, F. and Gallo, L. (2009) ‘Investigation on variability of candidate genes for meat quality traits in Piemontese cattle’, Italian Journal of Animal Science, 8(s2), pp. 132–134.

Ribeca, C., Maretto, F., Gallo, L., Albera, A., Bittante, G. and Carnier, P. (2010) ‘Effect of Calpain1, Calpastatin and Cathepsin genes and polygene on beef shear force in Piemontese young bulls’, Book of abstracts of the 60th Annual Meeting of the European Association for Animal Production, 24–27 August 2009, Barcelona, Spain. The Netherlands: Wageningen Academic Publishers, p. 145. Available at:

Roperto, S., De Tullio, R., Raso, C., Stifanese, R., Russo, V., Gaspari, M., Borzacchiello, G., Averna, M., Paciello, O., Cuda, G. and Roperto, F. (2010) ‘Calpain3 is expressed in a proteolitically active form in Papillomavirus-associated urothelial tumors of the urinary bladder in cattle’, PLoS ONE, 5(4), p. e10299.

Samanta, S., Ghoshal, A., Bhattacharya, K., Saha, B., Walden, P. and Mandal, C. (2012) ‘Sialoglycosylation of RBC in visceral Leishmaniasis leads to enhanced Oxidative stress, Calpain-Induced fragmentation of spectrin and hemolysis’, PLoS ONE, 7(7), p. e42361.

Sato, K. and Kawashima, S. (2001) ‘Calpain function in the modulation of signal transduction molecules’, Biological Chemistry, 382(5), pp. 743–751.

Schenkel, F. S., Miller, S. P., Jiang, Z., Mandell, I. B., Ye, X., Li, H. and Wilton, J. W. (2006) ‘Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle’, Journal of Animal Science, 84(2), pp. 291–299. Available at:

Smith, M. A. and Schnellmann, R. G. (2012) ‘Calpains, mitochondria, and apoptosis’, Cardiovascular Research, 96(1), pp. 32–37.

Soria, L. A., Corva, P. M., Huguet, M. J., Miсo, S. and Miquel, M. C. (2010) ‘Bovine μ-calpain (CAPN1) gene polymorphisms in Brangus and Brahman bulls’, Journal of Basic and Applied Genetics, 21(1), pp. 61–69.

Van Eenennaam, A. L., Li, J., Thallman, R. M., Quaas, R. L., Dikeman, M. E., Gill, C. A., Franke, D. E. and Thomas, M. G. (2006) ‘Validation of commercial DNA tests for quantitative beef quality traits’, Journal of Animal Science, 85(4), pp. 891–900.