Issue 3

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 2, Issue 3, October 2016, Pages 12–18

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)


Roman’ko M. E.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail:

Download PDF (print version)

Citation for print version: Roman’ko, M. E. (2016) ‘Physiological and biochemical mechanisms of contact interaction of nanoparticles of gold with Bacillus anthracis vaccine strain Sterne 34F2 cells’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 2(3), pp. 12–18.

Download PDF (online version)

Citation for online version: Roman’ko, M. E. (2016) ‘Physiological and biochemical mechanisms of contact interaction of nanoparticles of gold with Bacillus anthracis vaccine strain Sterne 34F2 cells’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 2(3), pp. 12–18. Available at:

Summary. The article presents the results of experimental studies of mechanisms of Aurum nanoparticles contact interaction on Bacillus anthracis vaccine strain. This research was aimed to study the physiological and biochemical mechanisms of influence of Aurum nanoparticles (AuNP) on B. anthracis cells (strain Sterne 34F2 — productive vaccine strain). The cell cultures biomass of B. anthracis (strain Sterne 34F2) was used as a model for our experiments. The sterile aqueous dispersion of Aurum nanoparticles with average size 19.0±0.9 nm and initial concentration of 19.3 μg/cm3 for the metal was used for accumulation of B. anthracis (strain Sterne 34F2) biomass and with average size of 30.0±0.6 nm in initial concentration of 38.6 μg/cm3 and 77.2 μg/cm3 by the metal — in experiments on the study of physiological and biochemical mechanisms of interaction of cells. The effectiveness of the interaction of B. anthracis cells (strain Sterne 34F2) with AuNP was evaluated by a membrane filter method with a followed by determination of optical density changes of mixture on a spectrophotometer. The value of H+‑ATPase activity (KF in total membrane fraction (TMF) bacterial cells was recorded by the accumulation of inorganic phosphorus (Pi). Respiratory activity (RA) of B. anthracis was measured by oxygen of electrode Clarks type. Measured parameter was the maximum speed of reducing the concentration of oxygen in the environment measurement, reduced to a unit of bacterial biomass. According to results of the impact of nanoparticles of Aurum (gold, AuNP) for basic the physiological and biochemical indicators of B. anthracis cells (strain Sterne 34F2) appeared promising metal nanoparticles in a concentration range 2.90–8.69 μg/cm3 for metal, as indicated by the presence of ATPase and respiratory activity stimulation and is consistent with the highest accumulation of cells research AuNP along with the intensification of proliferative activity of B. anthracis cells. The mechanisms of gold accumulation in B. anthracis cells have the metabolism-dependent nature which is characteristic only active metabolized cells, and desplayed within our experiment involving certain assets metabolism (determining role of the transmembrane potential and its generators — ATPase, respiratory activity (RA)) in the overall regulation of the metabolic system and functional organization (proliferation activity) of the bacterial cells.

Keywords: Bacillus anthracis, bacterial cell, Aurum (gold) nanoparticles, contact interaction, proliferative activity of H+‑ATPase activity, respiratory activity


Barth, H., Aktories, K., Popoff, M. R. and Stiles, B. G. (2004) ‘Binary bacterial toxins: Biochemistry, biology, and applications of common Clostridium and Bacillus proteins’, Microbiology and Molecular Biology Reviews, 68(3), pp. 373–402.

Basnak’yan, I. A., Borovkova, V. M. and Kuz’min, S. N. (1981) ‘Pathology and physiology of microbes’ [Patologiya i fiziologiya mikrobov], Journal of Microbiology, Epidemiology and immunobiology [Zhurnal mikrobiologii, epidemiologii i immunobiologii], 9, pp. 14–19. [in Russsian]

Cai, Q.‑Y., Kim, S. H., Choi, K. S., Byun, S. J., Kim, K. W., Park, S. H., Juhng, S. K. and Yoon, K.‑H. (2007) ‘Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice’, Investigative Radiology, 42(12), pp. 797–806.

Chen, P. C., Mwakwari, S. C. and Oyelere, A. K. (2008) ‘Gold nanoparticles: From nanomedicine to nanosensing’, Nanotechnology, Science and Applications, 1, pp. 45–65. Available at:

Danylovych, G. V., Gruzina, T. G., Ulberg, Z. R. and Kosterin, S. O. (2007) ‘Effect of ionic and colloid gold on ATP-hydrolase fermentative systems in membrane of Bacillus sp. B4253 and Bacillus sp. B4851’ [Vplyv ionnoho ta koloidnoho zolota na ATR-hidrolazni fermentni systemy v membrani mikroorhanizmiv Bacillus sp. B4253 ta Bacillus sp V4851], The Ukrainian Biochemical Journal [Ukrainskii biokhimichnyi zhurnal], 79(4), pp. 46–53. Available at: [in Ukrainian]

De Roe, C., Courtoy, P. J. and Baudhuin, P. (1987) ‘A model of protein-colloidal gold interactions’, Journal of Histochemistry and Cytochemistry, 35(11), pp. 1191–1198.

Dibkova, S. M., Roman’ko, M. Ye., Gruzina, T. G., Reznichenko, L. S., Ushkalov, V. A. and Golovko, A. N. (2009) ‘Gold nanoparticles genotoxiciti’, The Ukrainian Biochemical Journal [Ukrainskii biokhimichnyi zhurnal], 81(Suppl. 4), p. 291

Dybkova S. M. (2010) ‘Risk assessment of microflora of gastrointestinal tract at gold and silver nanoparticles expose’ [Otsinka stanu mikroflory shlunkovo-kyshkovoho traktu liudyny pry dii nanochastynok zolota i sribla], Visnyk problem biolohii ta medytsyny, 3, pp. 223–227. Available at: [in Ukrainian]

Dybkova, S. M., Romanko, М. E., Gruzina, T. G., Rieznichenko, L. S., Ulberg, Z. R., Ushkalov, V. O. and Golovko, A. M. (2009) ‘Determination of DNA damage by metal nanoparticles perspective for biotechnology’ [Vyznachennia ushkodzhen DNK nanochastynkamy metaliv, perspektyvnykh dlia biotekhnolohii], Biotechnologia Acta, 2(3), pp. 80–85. Available at: [in Ukrainian]

Feng, L., Tianjun, L. and Li, W. (2008) ‘Synthesis, characterization and cell-uptake of porphyrin-capped gold nanoparticle’, IFMBE Proceedings, 19, pp. 186–189.

Fiske, C. H. and Subbarow, Y. (1925) ‘The colorimetric determination of phosphorus’, The Journal of Biological Chemistry, 66(2), pp. 375–400. Available at:

Fu, W., Shenoy, D., Li, J., Crasto, C., Jones, G., Dimarzio, C., Sridhar, S. and Amiji, M. (2005) ‘Hetero-bifunctional poly(ethylene glycol) modified gold nanoparticles as an intracellular tracking and delivery agent’, NSTI Nanotech 2005, Anaheim, US, May 8-12, 2005, Vol. 1. pp. 324–327. ISBN 0976798506. Available at:

Hainfeld, J. F., Slatkin, D. N., Focella, T. M. and Smilowitz, H. M. (2006) ‘Gold nanoparticles: A new x-ray contrast agent’, The British Journal of Radiology, 79(939), pp. 248–253.

Holovko, A. M., Ushkalov, V. O., Machuskyi, O. V., Rieznichenko, L. S., Romanko M. Ye., Dybkova, S. M. and Babkin, M. V. (2011) Method for production of biomass of Bacillus anthracis with using of gold nanoparticles [Sposib otrymannia biomasy Bacillus anthracis z vykorystanniam nanochastynok zolota]. Patent no. UA 58450. Available at:

Ipatenko, N. G. (ed.) (1996) Anthrax [Sibirskaya yazva]. 2nd ed. Moscow: Kolos. ISBN 5100032847. [in Russian]

Lakin, G. F. (1990) Biometry [Biometriya]. 4th ed. Moscow: Vysshaya shkola. ISBN 5060004716. [in Russian]

Olsen, D. A. and Bernstein, D. (1989) Colloidal gold particle concentration immunoassay. Patent no. US 4853335 A. Available at:

Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E. and Tamarkin, L. (2004) ‘Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery’, Drug Delivery, 11(3), pp. 169–183.

Rawle, A. (1994) Basic principles of particle size analysis. Malvern Instruments. Available at:

Roman’ko, M. Ye. (2010) ‘Membrane-tropic effect of Aurum and Argentum nanoparticles on the intensity of oxidative processes in Escherichia cells under the conditions of their lyophilization/rehydration’ [Membranotropnyi vplyv nanochastynok Aurumu ta Arhentumu na intensyvnist okysniuvalnykh protsesiv u klitynakh Escherichia za umov yikh liofilizatsii/rehidratatsii], The Animal Biology [Biolohiia tvaryn], 12(2), pp. 460–473. Available at: [in Ukrainian]

Roman’ko, M. Ye. (2012) ‘The use of gold nanoparticles in biotechnology of production of cell biomass of Enterobacteriaceae production strains after lyophilization/rehydration’ [Zastosuvannia nanochastok aurumu v biotekhnolohiiakh otrymannia biomasy klityn enterobakterii vyrobnychykh shtamiv pislia yikh liofiliatsii/rehidratatsii], Proceeding of the II International Seminar ‘Ethics in nanotechnology and nanosafety’ [Materialy II mizhnarodnoho seminaru ‘Etyka nanotekhnolohii ta nanobezpeka’], Kyiv, 10 October, pp. 57–59. [in Ukrainian]

Roman’ko, M. Ye., Machusskiy, A. V. and Ushkalov, V. A. (2013) ‘Gold nanoparticles in biotechnology of Bacillus anthracis vaccine strain biomass cultivation’ [Nanochastitsy zolota v biotekhnologiyakh kul’tivirovaniya biomassy Bacillus anthracis vaktsinnogo shtamma], B63 Biotechnology. Looking to the future: II International Scientific Internet Conference: Proceeding [B63 Biotekhnologiya. Vzglyad v budushchee. II Mezhdunarodnaya nauchnaya internet-konferentsiya: materialy], Kazan, 26–27 March, pp. 294–297. ISBN 9785906217141. [in Russian]

Romanko, M. Ye., Boiko, V. S., Matiusha, L. V. and Ushkalov, V. O. (2010) ‘Membrane of cells Escherichia as systemic biomarker of estimation of biocompatibility and safety of nanomaterials’ [Membrana klityn Escherichia yak systemnyi biomarker otsiniuvannia biosumisnosti ta bezpeky nanomaterialiv], Veterinary Medicine [Veterynarna medytsyna], 94, pp. 140–146. Available at: [in Ukrainian]

Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R. and Sastry, M. (2005) ‘Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview’, Langmuir, 21(23), pp. 10644–10654.

Turnbull, P. (ed.) (2008) Anthrax in humans and animals. 4th ed. Geneva: World Health Organization. ISBN 9789241547536. Available at:

Ushkalov, V. O., Machutsky, O. V., Roman’ko, M. Y., Gruzina, T. G. and Reznichenko, L. S. (2011a) ‘Study of laboratory samples of Anthrax vaccine, which were made from Bacillus anthracis Sterne 34F2 [Vyvchennia imunohennoi aktyvnosti laboratornykh zrazkiv vaktsyny proty sybirky tvaryn iz shtamu Bacillus anthracis Sterne 34F2]’, Veterinary Medicine [Veterynarna medytsyna], 95, pp. 310–312. Available at: [in Ukrainian]

Ushkalov, V., Machus’kyy, O., Roman’ko, M., Gruzina, T., Reznichenko, L., Koshelnik, V. and Jakovleva, L. (2011b) ‘The results of the commission research of Anthrax spore vaccine, produced on Bacillus anthracis Sterne 34F2 strain [Rezultaty komisiinykh doslidzhen vaktsyny proty sybirky tvaryn iz shtamu Bacillus anthracis Sterne 34F2]’, The Scientific Bulletin of Veterinary Medicine [Naukovyi visnyk veterynarnoi medytsyny], 83, pp. 102–109. Available at: [in Ukrainian]

Zhang, S., Li, J., Lykotrafitis, G., Bao, G. and Suresh, S. (2009) ‘Size-dependent endocytosis of nanoparticles’, Advanced Materials, 21(4), pp. 419–424.