Issue 1

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 4, Issue 1, March 2018, Pages 24–27

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)


Fedota O. M1, Skrypkina I. Y. 2, Mitioglo L. V. 3, Tyzhnenko T. V. 1, Ruban S. Yu. 4

1 V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, e-mail:

2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

3 SE RFNyva’, Khrystynivka, Ukraine

4 National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

Download PDF (print version)

Citation for print version: Fedota, O. M., Skrypkina, I. Y., Mitioglo, L. V., Tyzhnenko, T. V. and Ruban, S. Yu. (2018) ‘Effects of MTHFR gene on reproductive health and productive traits of dairy cows’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 4(1), pp. 24–27.

Download PDF (online version)

Citation for online version: Fedota, O. M., Skrypkina, I. Y., Mitioglo, L. V., Tyzhnenko, T. V. and Ruban, S. Yu. (2018) ‘Effects of MTHFR gene on reproductive health and productive traits of dairy cows’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 4(1), pp. 24–27. Available at:

Summary. One-carbon metabolism of mammals is one of the key points of metabolism and the pleiotropic effects of human MTHFR gene determining reproductive health are known. The aim of this study was an evaluation the role of MTHFR gene in lactating dairy cows. Cows were genotyped by sequencing. The plasma homocysteine level, bone mineral density, traditional production and reproduction traits were analyzed. Statistical methods included Pearson’s chi-squared and t criteria, Pearson’s and Spearmen correlation coefficient r and ANOVA. Allele frequencies of SNP 8137C/T of MTHFR gene were: 0.943 (C) and 0.057 (T). Distribution of genotypes was 88.6% (CC) : 11.4% (CT) : 0% (TT). Investigated group of animals was in Hardy-Weinberg equilibrium. We had founded that calving interval were shorter in cows with the CC genotype than in CT animals, 378.6 vs 405.9 days, and than in the herd as a whole — 378.6 vs 388.5 days. Lactation period of CC cows shorter by 10 days than in CT cows, 321.7 vs 331.5 days. Analysis of traits of CC cows and animals in the herd had demonstrated that the age of first insemination and the age of first calving are significantly lower in CC cows than in the herd as a whole, 525.8 ± 17.8 vs 642.9 ± 7.5 days, and 808.6 ± 18.5 vs 936.6 ± 8.0 days. Higher bone mineral density values as an indicator of body health are observed in CC cows compared with CT animals, 3,580.3 vs 3,359.0 mg/mm3. The study of MTHFR gene associated with reproductive traits in cows is relevant as a basis for breeding and biochemical correction of gene effects causing the reproductive disorders of animals.

Keywords: dairy cows, MTHFR gene, homocysteine, bone mineral density, milk production, reproduction of cows


Al-Achkar, W., Wafa, A., Ammar, S., Moassass, F. and Jarjour, R. A. (2017) ‘Association of methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms with recurrent pregnancy loss in Syrian women’, Reproductive Sciences, 24(9), pp. 1275–1279.

Altomare, I., Adler, A. and Aledort, L. M. (2007) ‘The 5, 10 methylenetetrahydrofolate reductase C677T mutation and risk of fetal loss: a case series and review of the literature’, Thrombosis Journal, 5(1), p. 17.

Ananth, C. V., Peltier, M. R., De Marco, C., Elsasser, D. A., Getahun, D., Rozen, R. and Smulian, J. C. (2007) ‘Associations between 2 polymorphisms in the methylenetetrahydrofolate reductase gene and placental abruption’, American Journal of Obstetrics and Gynecology, 197(4), pp. 385.e1-385.e7.

Asim, A., Agarwal, S., Kulkarni, S. S. and Panigrahi, I. (2015) ‘Folate metabolism and genetic variant in Down syndrome: a meta-analysis’, Journal of Genetic Syndromes and Gene Therapy, 6(3), p. 1000270.

Atramentova, L. A. and Utevskaya, A. M. (2008) Statistical methods in biology [Statisticheskie metody v biologii]. Gorlovka: Lіkhtar. ISBN 9789662129267. [in Russian]

Doolin, M.-T., Barbaux, S., McDonnell, M., Hoess, K., Whitehead, A. S. and Mitchell, L. E. (2002) ‘Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida’, The American Journal of Human Genetics, 71(5), pp. 1222–1226.

Hwang, K. R., Choi, Y. M., Kim, J. J., Lee, S. K., Yang, K. M., Paik, E. C., Jeong, H. J., Jun, J. K., Yoon, S. H. and Hong, M. A. (2017) ‘Methylenetetrahydrofolate reductase polymorphisms and risk of recurrent pregnancy loss: a case-control study’, Journal of Korean Medical Science, 32(12), pp. 2029–2034.

Luo, L., Chen, Y., Wang, L., Zhuo, G., Qiu, C., Tu, Q., Mei, J., Zhang, W., Qian, X. and Wang, X. (2015) ‘Polymorphisms of genes involved in the folate metabolic pathway impact the occurrence of unexplained recurrent pregnancy loss’, Reproductive Sciences, 22(7), pp. 845–851.

Ocal, P., Ersoylu, B., Cepni, I., Guralp, O., Atakul, N., Irez, T. and Idil, M. (2012) ‘The association between homocysteine in the follicular fluid with embryo quality and pregnancy rate in assisted reproductive techniques’, Journal of Assisted Reproduction and Genetics, 29(4), pp. 299–304.

Poursadegh Zonouzi, A., Chaparzadeh, N., Asghari Estiar, M., Mehrzad Sadaghiani, M., Farzadi, L., Ghasemzadeh, A., Sakhinia, M. and Sakhinia, E. (2012) ‘Methylenetetrahydrofolate reductase C677T and A1298C mutations in women with recurrent spontaneous abortions in the Northwest of Iran’, ISRN Obstetrics and Gynecology, 2012, p. 945486.

Ren, A. and Wang, J. (2006) ‘Methylenetetrahydrofolate reductase C677T polymorphism and the risk of unexplained recurrent pregnancy loss: a meta-analysis’, Fertility and Sterility, 86(6), pp. 1716–1722.

Soligo, A. G., Barini, R. and Annichino-Bizzacchi, J. M. (2017) ‘Prevalence of the MTHFR C677T mutation in fertile and infertile women’, Revista Brasileira de Ginecologia e Obstetrícia, 39(12), pp. 659–662.

Stonek, F., Hafner, E., Philipp, K., Hefler, L. A., Bentz, E.-K. and Tempfer, C. B. (2007) ‘Methylenetetrahydrofolate reductase C677T polymorphism and pregnancy complications’, Obstetrics and Gynecology, 110(2), pp. 363–368.

Vanilla S., Dayanand, C. D., Kotur, P. F., Kutty, M. A. and Vegi, P. K. (2015) ‘Evidence of paternal N5, N10 - methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism in couples with recurrent spontaneous abortions (RSAs) in Kolar District- A South West of India’, Journal of Clinical and Diagnostic Research, 9(2), pp. BC15BC18.

Yapan, S., Liping, S., Hongzhen, Y., Guohua, H., Aizhen, G. and Liguo, Y. (2011) ‘Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism is associated with abortion in Chinese Holstein cows’, African Journal of Biotechnology, 10(64), pp. 13999–14004.

Zetterberg, H., Regland, B., Palmér, M., Ricksten, A., Palmqvist, L., Rymo, L., Arvanitis, D. A., Spandidos, D. A. and Blennow, K. (2002) ‘Increased frequency of combined methylenetetrahydrofolate reductase C677T and A1298C mutated alleles in spontaneously aborted embryos’, European Journal of Human Genetics, 10(2), pp. 113–118.

Zimin, A. V., Delcher, A. L., Florea, L., Kelley, D. R., Schatz, M. C., Puiu, D., Hanrahan, F., Pertea, G., Van Tassell, C. P., Sonstegard, T. S., Marçais, G., Roberts, M., Subramanian, P., Yorke, J. A. and Salzberg, S. L. (2009) ‘A whole-genome assembly of the domestic cow, Bos taurus’, Genome Biology, 10(4), p. R42.