Issue 4

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 4, Issue 4, December 2018, Pages 19–28

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)


Shigimaga V. O. 1, Paliy And. P. 1, Pankova O. V. 1, Paliy Anat. P. 2

1 Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine, е-mail:

2 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, е-mail:

Download PDF (print version)

Citation for print version: Shigimaga, V. O., Paliy, And. P., Pankova, O. V. and Paliy, Anat. P. (2018) ‘Biophysical model of biological cell conductivity based on the membrane electroporation probability’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 4(4), pp. 19–28.

Download PDF (online version)

Citation for online version: Shigimaga, V. O., Paliy, And. P., Pankova, O. V. and Paliy, Anat. P. (2018) ‘Biophysical model of biological cell conductivity based on the membrane electroporation probability’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 4(4), pp. 19–28. Available at:

Summary. The membrane electroporation of a biological cell was well known as a convenient, multipurpose and universal way of temporarily increasing its permeability in a pulsed electric field (PEF) with certain parameters. The process and result of the membrane interaction with the PEF is greatly influenced by its heterogeneous biological structure, which has both native pores of various sizes and various protein inclusions. This leads to heterogeneity of the electrophysical properties. All this ultimately affects the cellular conduction in the PEF, which is both an indicator and an integral characteristic of the electroporation process of the membrane as a whole. This process can be modelled, considering the physical properties of the membrane and the cells, as conductors of the pulsed current. However, to consider in modelling all the features of the native structure of the membrane pores, as well as newly formed electropores as a result of interaction with the external PEF is impossible. However, if we apply a probabilistic approach to the formation of electropores, it becomes possible to construct an adequate model of electroporation. In this article is presented the developed biophysical (BP) model of cell conductivity, constructed on the basis of the electropores formation probability in a membrane under the influence of a pulse electric field (PEF). The model assumes that in membrane are formed electropores of different calibers, the distribution of which submits to normal Gauss’s law. The integral for the total conductivity of the electroporated membrane is obtained using the integral equation for the total current through the electropore membrane and the equation for its conductivity, including the formation of the electropore probability function. The general view of the electropore formation probability function is received by solution of Fokker-Planck’s differential equation. Substitution of this equation solution to conductivity integral gave the general view of the conductivity function connecting it with electropore caliber. A comparison of the constructed probability electroporation BP model with experimental data on mice oocyte conductivity showed that the main reason for exponential increase of cell conductivity in increasing electrical field strength is similar nature of conductivity increase with increasing electropore caliber up to membrane breakdown. The constructed probability BP model of cell conductivity at membrane electroporation in increasing PEF agrees with the experimental data.

Keywords: pulse electric field, increasing strength, electropore caliber, cell membrane, Gauss’s law, conductivity integral


Böckmann, R. A., De Groot, B. L., Kakorin, S., Neumann, E. and Grubmüller, H. (2008) ‘Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations’, Biophysical Journal, 95(4), pp. 1837–1850.

Chang, D. C., Chassy, B. M., Saunders, J. A. and Sowers, A. E. (eds.) (1991) Guide to electroporation and electrofusion. Academic Press.

Dehez, F., Delemotte, L., Kramar, P., Miklavčič, D. and Tarek, M. (2014) ‘Evidence of conducting hydrophobic nanopores across membranes in response to an electric field’, The Journal of Physical Chemistry C, 118(13), pp. 6752–6757.

den Otter, W. K. (2009) ‘Free energies of stable and metastable pores in lipid membranes under tension’, The Journal of Chemical Physics, 131(20), p. 205101.

Dermol-Cerne, J. and Miklavcic, D. (2018) ‘From cell to tissue properties—modeling skin electroporation with pore and local transport region formation’, IEEE Transactions on Biomedical Engineering, 65(2), pp. 458–468.

Fernández, M. L., Risk, M. R. and Vernier, P. T. (2018) ‘Electropore formation in mechanically constrained phospholipid bilayers’, The Journal of Membrane Biology, 251(2), pp. 237–245.

Fuertes, G., Giménez, D., Esteban-Martín, S., Sánchez-Muñoz, O. L. and Salgado, J. (2011) ‘A lipocentric view of peptide-induced pores’, European Biophysics Journal, 40(4), pp. 399–415.

Golberg, A. and Rubinsky, B. (2010) ‘A statistical model for multidimensional irreversible electroporation cell death in tissue’, BioMedical Engineering OnLine, 9(1), p. 13.

Gowrishankar, T. R., Smith, K. C. and Weaver, J. C. (2013) ‘Transport-based biophysical system models of cells for quantitatively describing responses to electric fields’, Proceedings of the IEEE, 101(2), pp. 505–517.

Gurtovenko, A. A. and Lyulina, A. S. (2014) ‘Electroporation of asymmetric phospholipid membranes’, The Journal of Physical Chemistry B, 118(33), pp. 9909–9918.

Hoiles, W., Krishnamurthy, V. and Cornell, B. (2018) Dynamics of Engineered Artificial Membranes and Biosensors. Cambridge University Press.

Hoiles, W., Krishnamurthy, V., Cranfield, C. G. and Cornell, B. (2014) ‘An engineered membrane to measure electroporation: effect of tethers and bioelectronic interface’, Biophysical Journal, 107(6), pp. 1339–1351.

Kamenshchikov, S. A. (2014) ‘Transport catastrophe analysis as an alternative to a monofractal description: theory and application to financial crisis time series’, Journal of Chaos, 2014, p. 346743.

Kolesnikova, A. A., Shigimaga, V. A. and Smolyaninova, E. I. (2013) ‘The influence of stimulation of maturation on electroconductivity and fertilization rate of mouse oocytes’ [Vliyanie stimulyatsii sozrevaniya na elektroprovodnosti oplodotvoryaemostootsitov myshi], Fundamental Research [Fundamental’nye issledovaniya], 4(4), pp. 896–899. Available at: [in Russian]

Kotnik, T., Kramar, P., Pucihar, G., Miklavčič, D. and Tarek, M. (2012) ‘Cell membrane electroporation—Part 1: the phenomenon’, IEEE Electrical Insulation Magazine, 28(5), pp. 14–23.

Kotnik, T., Pucihar, G. and Miklavčič, D. (2010) ‘Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport’, The Journal of Membrane Biology, 236(1), pp. 3–13.

Kramar, P., Delemotte, L., Maček Lebar, A., Kotulska, M., Tarek, M. and Miklavčič, D. (2012) ‘Molecular-level characterization of lipid membrane electroporation using linearly rising current’, The Journal of Membrane Biology, 245(10), pp. 651–659.

Kramar, P., Miklavčič, D. and Maček Lebar, A. (2007) ‘Determination of the lipid bilayer breakdown voltage by means of linear rising signal’, Bioelectrochemistry, 70(1), pp. 23–27.

Krassowska, W. and Filev, P. D. (2007) ‘Modeling electroporation in a single cell’, Biophysical Journal, 92(2), pp. 404–417.

Luitel, P., Schroeter, D. F. and Powell, J. W. (2007) ‘Self-electroporation as a model for fusion pore formation’, Journal of Biomolecular Structure and Dynamics, 24(5), pp. 495–503.

Mahnič-Kalamiza, S., Miklavčič, D. and Vorobiev, E. (2014) ‘Dual-porosity model of solute diffusion in biological tissue modified by electroporation’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(7), pp. 1950–1966.

Miklavčič, D. (2012) ‘Network for development of electroporation-based technologies and treatments: COST TD1104’, The Journal of Membrane Biology, 245(10), pp. 591–598.

Miklavčič, D. (ed.) (2017) Handbook of electroporation. Cham, Switzerland: Springer International Publishing.

Miklavčič, D. and Towhidi, L. (2010) ‘Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells’, Radiology and Oncology, 44(1), pp. 34–41.

Morshed, B. I., Shams, M. and Mussivand, T. (2013) ‘Deriving an electric circuit equivalent model of cell membrane pores in electroporation’, Biophysical Reviews and Letters, 08(01n02), pp. 21–32.

Neu, W. K. and Neu, J. C. (2009) ‘Theory of Electroporation’, in Efimov, I. R., Kroll, M. W. and Tchou, P. J. (eds.) Cardiac Bioelectric Therapy. Boston, MA: Springer US, pp. 133–161.

Pavlin, M., Kotnik, T., Miklavčič, D., Kramar, P. and Maček Lebar, A. (2008) ‘Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes’, in Leitmannova Liu, A. (ed.) Advances in Planar Lipid Bilayers and Liposomes, 6. Elsevier, pp. 165–226.

Polak, A., Tarek, M., Tomšič, M., Valant, J., Ulrih, N. P., Jamnik, A., Kramar, P. and Miklavčič, D. (2014) ‘Electroporation of archaeal lipid membranes using MD simulations’, Bioelectrochemistry, 100, pp. 18–26.

Pucihar, G., Krmelj, J., Reberšek, M., Napotnik, T. and Miklavčič, D. (2011) ‘Equivalent pulse parameters for electroporation’, IEEE Transactions on Biomedical Engineering, 58(11), pp. 3279–3288.

Rems, L. and Miklavčič, D. (2016) ‘Tutorial: electroporation of cells in complex materials and tissue’, Journal of Applied Physics, 119(20), p. 201101.

Rems, L., Tarek, M., Casciola, M. and Miklavčič, D. (2016) ‘Properties of lipid electropores II: comparison of continuum-level modeling of pore conductance to molecular dynamics simulations’, Bioelectrochemistry, 112, pp. 112–124.

Risken, H. (1996) The Fokker-Planck equation: methods of solution and applications. 2nd ed. Berlin, Heidelberg: Springer (Springer Series in Synergetics, 18).

Saulis, G., Saule, R., Bitinaite, A., Zurauskiene, N., Stankevic, V. and Balevicius, S. (2013) ‘Theoretical analysis and experimental determination of the relationships between the parameters of the electric field pulse required to electroporate the cells’, IEEE Transactions on Plasma Science, 41(10), pp. 2913–2919.

Schmeer, M., Seipp, T., Pliquett, U., Kakorin, S. and Neumann, E. (2004) ‘Mechanism for the conductivity changes caused by membrane electroporation of CHO cell-pellets’, Physical Chemistry Chemical Physics, 6(24), pp. 5564–5574.

Shigimaga, V. A. (2013a) ‘Nonlinear electric model of biological cell conductivity’ [Nelineynaya elektricheskaya model’ provodimosti biologicheskoy kletki], Technical Electrodynamics [Tekhnichna elektrodynamika], 6, pp. 30–35. Available at: [in Russian]

Shigimaga, V. A. (2013b) ‘Pulsed conductometer for biological cells and liquid media’, Measurement Techniques, 55(11), pp. 1294–1300.

Shigimaga, V. A. (2014) Biotechnical complex of pulsed conductometry and electromanipulation with animal cells [Biotekhnichnyi kompleks impulsnoi konduktometrii i elektromanipuliatsii z klitynamy tvaryn]. The dissertation thesis for the scientific degree of the doctor of technical sciences. Kharkiv: Petro Vasylenko Kharkiv National Technical University of Agriculture. [in Ukrainian]

Shigimaga, V. A. (2015) ‘Pulsed conductometry in a variable electric field: outlook for the development of measurements’, Measurement Techniques, 57(10), pp. 1213–1218.

Shigimaga, V. A. (2017) ‘Differential pulsed conductometer for measurements of the conductivity of biological cells’, Measurement Techniques, 60(7), pp. 746–750.

Shigimaga, V. A., Levkin, D. A. and Megel, Yu. Ye. (2011) ‘Mathematical modeling of membrane in connection with cell conductivity in various solutions’ [Matematicheskoe modelirovanie membrany v svyazi s provodimost’yu kletki v razlichnykh rastvorakh], Eastern-European Journal of Enterprise Technologies [Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy], 4(4), pp. 53–55. Available at: [in Russian]

Shigimaga, V. A. and Megel, Yu. Ye. (2011a) ‘Method for determination of the conductivity of oocytes and embryos in different conditions of the dielectric medium’ [Metod opredeleniya provodimosti ootsitov i embrionov v razlichnykh usloviyakh dielektricheskoy sredy], Bulletin of the National Technical University ‘Kharkov Polytechnic Institute’ [Vestnik Natsional’nogo tekhnicheskogo universitetaKhar’kovskiy politekhnicheskiy institut’], 9, pp. 140–144. Available at: [in Russian]

Shigimaga, V. A. and Megel, Yu. Ye. (2011b) ‘Research of conductivity of cells at change of environment osmotic concentration’ [Issledovanie provodimosti kletok pri izmenenii osmoticheskoy kontsentratsii sredy], Eastern-European Journal of Enterprise Technologies [Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy], 2(5), pp. 53–55. Available at: [in Russian]

Shigimaga, V. A. and Megel’, Yu. Ye. (2012) ‘Application of pulse conductometry method to investigation of electrical characteristics of biological cells’ [Primenenie metoda impul’snoy konduktometrii dlya issledovaniya elektricheskikh kharakteristik biologicheskikh kletok], Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine [Pratsi Instytutu elektrodynamiky Natsionalnoi akademii nauk Ukrainy], 31, pp. 147–155. Available at: [in Russian]

Shigimaga, V. A., Megel, Yu. Ye., Kovalenko, S. V. and Kovalenko, S. M. (2017) ‘Modelling and analysis of electroporation parameters of the membrane of a biological cell in a varied intensity pulsed electric field’ [Modelirovanie i analiz parametrov elektroporatsii membrany biologicheskoy kletki v impul’snom elektricheskom pole s izmenyaemoy napryazhennost’yu], Radio Electronics, Computer Science, Control [Radioelektronika, informatika, upravlenie], 4, pp. 57–65. [in Russian]

Smith, K. C. and Weaver, J. C. (2012) ‘Electrodiffusion of molecules in aqueous media: a robust, discretized description for electroporation and other transport phenomena’, IEEE Transactions on Biomedical Engineering, 59(6), pp. 1514–1522.

Smolyaninova, E. I., Shigimaga, V. A. and Kolesnikova, A. A. (2009) ‘The effect of hormone stimulation on morphological and electric parameters of murine oocytes’ [Vplyv hormonalnoi stymuliatsii na morfolohichni ta elektrychni parametry ootsytiv myshi], The Animal Biology [Biolohiia tvaryn], 11(1–2), pp. 328–337. Available at: [in Ukrainian]

Smolyaninova, Е. I., Shigimaga, V.A., Strikha, O. A., Popivnenko, L. I. and Gordienko, Е. А. (2014) ‘Electric conductivity as a diagnostic parameter for mammalian oocyte and embryo quality estimation in biotechnology operations’ [Elektricheskaya provodimostkak diagnosticheskiy parametr otsenki kachestva ootsitov i embrionov mlekopitayushchikh v biotekhnologicheskikh operatsiyakh], Biophysics of Living Cells [Biofizika zhivoy kletki], 10, pp. 193–195. Available at: [in Russian]

Son, R. S., Smith, K. C., Gowrishankar, T. R., Vernier, P. T. and Weaver, J. C. (2014) ‘Basic features of a cell electroporation model: illustrative behavior for two very different pulses’, The Journal of Membrane Biology, 247(12), pp. 1209–1228.

Suzuki, D. O. H., Ramos, A., Ribeiro, M. C. M., Cazarolli, L. H., Silva, F. R. M. B., Leite, L. D. and Marques, J. L. B. (2011) ‘Theoretical and experimental analysis of electroporated membrane conductance in cell suspension’, IEEE Transactions on Biomedical Engineering, 58(12), pp. 3310–3318.

Talele, S. and Gaynor, P. (2010) ‘Modelling control of pore number and radii distribution in single-cell electroporation’, in Elleithy, K., Sobh, T., Iskander, M., Kapila, V., Karim, M. A. and Mahmood, A. (eds.) Technological developments in networking, education and automation. Dordrecht: Springer, pp. 231–236.

Towhidi, L., Kotnik, T., Pucihar, G., Firoozabadi, S. M. P., Mozdarani, H. and Miklavčič, D. (2008) ‘Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation’, Electromagnetic Biology and Medicine, 27(4), pp. 372–385.

Wang, M., Orwar, O., Olofsson, J. and Weber, S. G. (2010) ‘Single-cell electroporation’, Analytical and Bioanalytical Chemistry, 397(8), pp. 3235–3248.

Yarmush, M. L., Golberg, A., Serša, G., Kotnik, T. and Miklavčič, D. (2014) ‘Electroporation-based technologies for medicine: principles, applications, and challenges’, Annual Review of Biomedical Engineering, 16(1), pp. 295–320.

Ziegler, M. J. and Vernier, P. T. (2008) ‘Interface water dynamics and porating electric fields for phospholipid bilayers’, The Journal of Physical Chemistry B, 112(43), pp. 13588–13596.