Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 6, Issue 3, September 2020, Pages 5–8

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)


Kovalenko L. V. 1, Boiko V. S. 1, Rudenko O. P. 1, Busol V. O. 1, Busol L. V. 2

1 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail:

2 Kharkiv State Zooveterinary Academy, Kharkiv, Ukraine

Download PDF (print version)

Citation for print version: Kovalenko, L. V., Boiko, V. S., Rudenko, O. P., Busol, V. O. and Busol, L. V. (2020) ‘Modulation of innate immunity of calves in the early neonatal period with probiotic nanometal globulin drug’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 6(3), pp. 5–8.

Download PDF (online version)

Citation for online version: Kovalenko, L. V., Boiko, V. S., Rudenko, O. P., Busol, V. O. and Busol, L. V. (2020) ‘Modulation of innate immunity of calves in the early neonatal period with probiotic nanometal globulin drug’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 6(3), pp. 5–8. DOI: 10.36016/JVMBBS-2020-6-3-1.

Summary. The article highlights the results of studying the effect of a new probiotic nanometal globulin drug (PNMGD) on biomarkers of innate immunity of newborn calves. The experiment was performed on two groups of calves. Animals of the experimental group from the 2nd day of life were fed the drug for 5 days at a dose of 0.25 g/kg of body weight with milk, calves of the control group received milk without its addition. Before the experiment, and on the 10th, 20th, 35th day of the experiment, blood was taken from calves for clinical and biochemical studies. The obtained results show that the use of PNMGD causes an increase in the natural resistance of calves. This is indicated by an increase in the expression of such markers of innate immunity as globulins, circulating immune complexes and nitrogen metabolites by an average of 17–25%, as well as inhibition of seromucoid synthesis by 16.9%. Signs of anti-stress effect of the drug on the calves in the early postnatal period have been found. The positive effect of PNMGD on the state of innate immunity of calves can be regarded as one of the factors increasing the average daily weight gain by 32.2% in the first 36 days of life

Keywords: immune resistance, clinical and biochemical parameters, anti-stress effect


Bogdan, C., Röllinghoff, M. and Diefenbach, A. (2000) ‘The role of nitric oxide in innate immunity’, Immunological Reviews, 173(1), pp. 17–26. doi:

CE (The Council of Europe). (1986) European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. (European Treaty Series, No. 123). Strasbourg: The Council of Europe. Available at:

CEC (The Council of the European Communities). (1986) ‘Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes’, The Official Journal of the European Communities, L 358, pp. 1–28. Available at:

Chornyi, M. V., Shchepetilnikov, Yu. O., Bondar, A. O. and Panasenko, Ye. O. (2016) ‘Influence of abiotic factors on the cows health and productivity and on calves resistance’ [Vplyv abiotychnykh faktoriv na produktyvnist ta zdorovia koriv i rezystentnist teliat], Ukrainian Black Sea Region Agrarian Science [Visnyk ahrarnoi nauky Prychornomoria], 2(2), pp. 161–170. Available at: [in Ukrainian]

Cuttance, E. and Laven,  R. (2019) ‘Estimation of perinatal mortality in dairy calves: A review’, The Veterinary Journal, 252, p. 105356. doi:

Kondrakhin, I. P., Kurilov, N. V., Malakhov, A. G., Arkhipov, A. V., Belov, A. D., Belyakov, I. M., Blinov, N. I., Korobov, A. V., Frolova, L. A. and Sevast’yanova, N. A. (1985) Clinical Laboratory Diagnostics in Veterinary Medicine [Klinicheskaya laboratornaya diagnostika v veterinarii]. Moscow: Agropromizdat. [in Russian]

Koryakina, L. P. and Borisov, N. I. (2015) ‘Indices of autarcesis and blood physiological and biochemical status of newborn calves’ [Pokazateli estestvennoy rezistentnosti i fiziologo-biokhimicheskiy status krovi u novorozhdennykh telyat], Vestnik of the North-Eastern Federal University Named After M. K. Ammosov [Vestnik Severo-Vostochnogo federal’nogo universiteta imeni M. K. Ammosova], 5, pp. 23–30. Available at: [in Russian]

Kovalenko, L. V., Boiko, V. S., Rudenko, O. P., Krotovska, Yu. M. and Doletskyi, S. P. (2017) ‘Affect of complex probiotic nanometal globulin preparation on level of nonspecific resistance indicators of chickens’ [Vplyv kompleksnoho probiotychno nanometalohlobulinovoho preparatu na riven pokaznykiv nespetsyfichnoi rezystentnosti kurchat], Veterinary Medicine [Veterynarna medytsyna], 103, pp. 335–339. Available at: [in Ukrainian]

Labinskaya, A. S. (1978) Microbiology with Microbiological Research Technique [Mikrobiologiya s tekhnikoy mikrobiologicheskikh issledovaniy]. 4th ed. Moscow: Meditsina. [in Russian]

Lavelle, E. C. and McLachlan, J. B. (2018) ‘Editorial overview: Immunomodulation: Striking the right balance: using immunomodulators to target infectious diseases, cancer, and autoimmunity’, Current Opinion in Pharmacology, 41, pp. vii–ix. doi:

Lee, S. H., Lillehoj, H. S., Jang, S. Ik., Kim, D. K., Ionescu, C. and Bravo, D. (2010) ‘Effect of dietary Curcuma, Capsicum, and Lentinus, on enhancing local immunity against Eimeria acervulina infection’, The Journal of Poultry Science, 47(1), pp. 89–95. doi:

Lytvyn, V. P., Oliinyk, L. V., Korniienko, L. Ye., Yarchuk, B. M. and Dombrovskyi, O. B. (2002) Factor Diseases of Farm Animals [Faktorni khvoroby silskohospodarskykh tvaryn]. Kyiv: Ahrarna nauka. ISBN 9665400738. [in Ukrainian]

Maldonado Galdeano, C., Cazorla, S. I., Lemme Dumit, J. M., Vélez, E. and Perdigón, G. (2019) ‘Beneficial effects of probiotic consumption on the immune system’, Annals of Nutrition and Metabolism, 74(2), pp. 115–124. doi:

Men’shikov, V. V. (ed.) (1987) Laboratory Research Methods in Clinic [Laboratornye metody issledovaniya v klinike]. Moscow: Meditsina. [in Russian]

Noh, E.-M., Kim, J.-M., Lee, H. Y., Song, H.-K., Joung, S. O., Yang, H. J., Kim, M. J., Kim, K. S. and Lee, Y.-R. (2019) ‘Immuno-enhancement effects of Platycodon grandiflorum extracts in splenocytes and a cyclophosphamide-induced immunosuppressed rat model’, BMC Complementary and Alternative Medicine, 19(1), p. 322. doi:

Ragland, S. A. and Criss, A. K. (2017) ‘From bacterial killing to immune modulation: Recent insights into the functions of lysozyme’, PLoS Pathogens, 13(9), p. e1006512. doi:

Smith, D. M., Simon, J. K. and Baker Jr, J. R. (2013) ‘Applications of nanotechnology for immunology’, Nature Reviews Immunology, 13(8), pp. 592–605. doi:

Stegniy, B. T., Kovalenko, L. V., Ushkalov, V. O., Doletskyi, S. P., Romanko, M. Ye., Boiko, V. S., Matiusha, L. V. and Krotovska, Yu. M. (2007) Methods for Estimating the Intensity of Lipid Peroxidation and its Regulation in Biological Objects: Methodological Recommendations [Metody otsinky intensyvnosti perekysnoho okysnennia lipidiv ta yoho rehuliatsii u biolohichnykh ob’iektakh: metodychni rekomendatsii]. Kharkiv: NSC ‘Institute of Experimental and Clinical Veterinary Medicine’. [in Ukrainian]

Van de Perre, P. (2003) ‘Transfer of antibody via mother’s milk’, Vaccine, 21(24), pp. 3374–3376. doi:

Van Emden, H. F. (2019) Statistics for Terrified Biologists. 2nd ed. Hoboken, NJ: John Wiley & Sons. ISBN 9781119563679

Weigert, A., Von Knethen, A., Fuhrmann, D., Dehne, N. and Brüne, B. (2018) ‘Redox-signals and macrophage biology’, Molecular Aspects of Medicine, 63, pp. 70–87. doi: