Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 8, Issue 1–2, May 2022, Pages 23–29

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)


Chechet O. M. 1, Kovalenko V. L. 2

1 State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine

2 State Scientific Control Institute of Biotechnology and Strains of Microorganisms, Kyiv, Ukraine, e-mail:

Download PDF (print version)

Citation for print version: Chechet, O. M. and Kovalenko, V. L. (2022) ‘Study of the safety and harmlessness of a disinfectant in laboratory animals’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 8(1–2), pp. 23–29.

Download PDF (online version)

Citation for online version: Chechet, O. M. and Kovalenko, V. L. (2022) ‘Study of the safety and harmlessness of a disinfectant in laboratory animals’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 8(1–2), pp. 23–29. DOI: 10.36016/JVMBBS-2022-8-1-2-4.

Summary. The work aimed to investigate the effect of the disinfectant ‘Diolaid’ based on sodium chlorite and sodium chloride on acute toxicity indicators, as well as on blood parameters of laboratory animals. The experiments were carried out on 6-month-old clinically healthy male rats (5 groups, 6 animals in each group, n = 30) and female rats (5 groups, 6 animals in each group, n = 30) weighing 200–220 g. The drug was administered to animals intragastrically (by probe) and aerosol treatment of cells with animals was carried out. Separately we studied the skin-irritating and sensitizing action of the disinfectant ‘Diolaid’ on the groups of clinically healthy guinea pigs and rats weighing 250–300 g by a daily application on their back and sides of different concentrations of the drug for 30 days for 30 min periods. In addition, we tested the effect of ‘Diolaid’ on nonspecific immune response indicators of these animal species (bactericidal activity of blood serum, level of circulating immune complexes, T and B cells, etc.). The work used modern humane methods of care and use of laboratory animals. It was found that after intragastric administration of ‘Diolaid’, the average lethal dose (LD50) for male rats was 182 mg/kg of body weight, and for female rats it was 170 mg/kg. It has been proven that the drug has a temporary irritating and sensitizing effect and does not adversely affect the parameters of hematopoiesis and non-specific immune response in the form of a 0.06% solution. The research results indicate the low toxicity of the ‘Diolaid’ drug for laboratory animals and the possibility of its use in low concentrations both for treating cages in the presence of animals and for treating the animals themselves. For disinfection of water during its storage in containers, we used the concentration of the ‘Diolaid’ drug (by chlorine dioxide) of 0.5–2 mg/l (0.0002–0.0008%), depending on the degree of purity of the water to be treated. Such concentrations ensure compliance of the chlorite residual concentrations with hygienic standards

Keywords: rats, guinea pigs, acute toxicity, irritating and sensitizing effects, immune response


Addie, D. D., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M. C., Hosie, M. J., Lloret, A., Lutz, H., Marsilio, F., Pennisi, M. G., Radford, A. D., Thiry, E., Truyen, U., Möstl, K. and European Advisory Board on Cat Diseases (2015) ‘Disinfectant choices in veterinary practices, shelters and households: ABCD guidelines on safe and effective disinfection for feline environments’, Journal of Feline Medicine and Surgery, 17(7), pp. 594–605. doi: 10.1177/1098612X15588450.

Bercz, J. P., Jones, L., Garner, L., Murray, D., Ludwig, D. A. and Boston, J. (1982) ‘Subchronic toxicity of chlorine dioxide and related compounds in drinking water in the nonhuman primate.’, Environmental Health Perspectives, 46, pp. 47–55. doi: 10.1289/ehp.824647.

Buckmaster, C. (2012) ‘Shifting the culture of lab animal care’, Lab Animal (NY), 41(7), p. 205. doi: 10.1038/laban0712-205.

CE (The Council of Europe). (1986) European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. (European Treaty Series, No. 123). Strasbourg: The Council of Europe. Available at:

CEC (The Council of the European Communities) (2010) ‘Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes’, The Official Journal of the European Communities, L 276, pp. 33–79. Available at:

Daniel, F. B., Condie, L. W., Robinson, M., Stober, J. A., York, R. G., Olson, G. R. and Wang, S.-R. (1990) ‘Comparative subchronic toxicity studies of three disinfectants’, Journal - American Water Works Association, 82(10), pp. 61–69. doi: 10.1002/j.1551-8833.1990.tb07038.x.

Ge, Y., Zhang, X., Shu, L. and Yang, X. (2021) ‘Kinetics and mechanisms of virus inactivation by chlorine dioxide in water treatment: A review’, Bulletin of Environmental Contamination and Toxicology, 106(4), pp. 560–567. doi: 10.1007/s00128-021-03137-3.

Gebel, J., Exner, M., French, G., Chartier, Y., Christiansen, B., Gemein, S., Goroncy-Bermes, P., Hartemann, P., Heudorf, U., Kramer, A., Maillard, J.-Y., Oltmanns, P., Rotter, M. and Sonntag, H.-G. (2013) ‘The role of surface disinfection in infection prevention’, GMS Hygiene and Infection Control, 8(1), p. 10. doi: 10.3205/DGKH000210.

Gosstandart (The USSR State Committee of Standards) (1976) GOST 12.1.007-76. Occupational Safety Standards System. Noxious Substances. Classification and General Safety Requirements [Sistema standartov bezopasnosti truda. Vrednye veshchestva. Klassifikatsiya i obshchie trebovaniya bezopasnosti]. Moscow: Izdatel’stvo standartov. [in Russian].

Haruta, S. and Kanno, N. (2015) ‘Survivability of microbes in natural environments and their ecological impacts’, Microbes and Environments, 30(2), pp. 123–125. doi: 10.1264/jsme2.ME3002rh.

Kotsiumbas, I. Ya., Malyk, O. H., Patereha, I. P., Tishyn, O. L. and Kosenko, Yu. M. (2006) Preclinical studies of veterinary drugs [Doklinichni doslidzhennia veterynarnykh likarskykh zasobiv]. Lviv: Triada plus. ISBN 9667596648. [in Ukrainian].

Kovalenko V. L. and Nedosiekov V. V. (2011) Methodical Approaches to the Control of Disinfectants for Veterinary Medicine [Metodychni pidkhody kontroliu dezinfikuiuchykh zasobiv dlia veterynarnoi medytsyny]. Kyiv. [in Ukrainian].

Kovalenko, V. L., Kovalenko, P. L., Ponomarenko, G. V., Kukhtyn, M. D., Midyk, S. V., Horiuk, Yu. V. and Garkavenko, V. M. (2018) ‘Changes in lipid composition of Escherichia coli and Staphylococcus areus cells under the influence of disinfectants Barez®, Biochlor® and Geocide®’, Ukrainian Journal of Ecology, 8(1), pp. 547–550. doi: 10.15421/2018_248.

Kovalenko, V. L., Ponomarenko, G. V., Kukhtyn, M. D., Paliy, A. P., Bodnar, O. O., Rebenko, H. I., Kozytska, T. G., Makarevich, T. V., Ponomarenko, O. V. and Palii, A. P. (2020) ‘Evaluation of acute toxicity of the “Orgasept” disinfectant’, Ukrainian Journal of Ecology, 10(4), pp. 273–278. doi: 10.15421/2020_1982.

Lin, W., Niu, B., Yi, J., Deng, Z., Song, J. and Chen, Q. (2018) ‘Toxicity and metal corrosion of glutaraldehyde-didecyldimethylammonium bromide as a disinfectant agent’, BioMed Research International, 2018, p. 9814209. doi: 10.1155/2018/9814209.

Lineback, C. B., Nkemngong, C. A., Wu, S. T., Li, X., Teska, P. J. and Oliver, H. F. (2018) ‘Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds’, Antimicrobial Resistance and Infection Control, 7(1), p. 154. doi: 10.1186/s13756-018-0447-5.

Ma, J.-W., Huang, B.-S., Hsu, C.-W., Peng, C.-W., Cheng, M.-L., Kao, J.-Y., Way, T.-D., Yin, H.-C. and Wang, S.-S. (2017) ‘Efficacy and safety evaluation of a chlorine dioxide solution’, International Journal of Environmental Research and Public Health, 14(3), p. 329. doi: 10.3390/ijerph14030329.

MAPFU (Ministry of Agrarian Policy and Food of Ukraine) (2011) SOU 85.2-37-736:2011. Veterinary Preparations. Determination of Acute Toxicity [SOU 85.2-37-736:2011. Preparaty veterynarni. Vyznachennia hostroi toksychnosti]. Kyiv: Ministry of Agrarian Policy and Food of Ukraine. [in Ukrainian]

MHU (Ministry of Health of Ukraine) (2007) Methodological Recomendations ‘Sanitary and Epidemiological Supervision of Water Disinfection in Systems of Centralized Household Drinking Water Supply with Chlorine Dioxide’ (MR 2.2.4-147-2007): approved by the order of the Ministry of Health of Ukraine of 30 July 2007 No. 430’ [Metodychni rekomendatsii ‘Sanitarno-epidemiolohichnyi nahliad za znezarazhuvanniam vody u systemakh tsentralizovanoho hospodarsko-pytnoho vodopostachannia dioksydom khloru’ (MR 2.2.4-147-2007): zatverdzheno nakazom Ministerstva okhorony zdorovia Ukrainy vid 30 lypnia 2007 r. № 430]. Available at: [in Ukrainian].

MHU (Ministry of Health of Ukraine) (2010) ‘State Sanitary Norms and Rules “Hygienic Requirements for Drinking Water Intended for Human Consumption” (SSanR&N 2.2.4-171-10): approved by the order of the Ministry of Health of Ukraine of 12 May 2010 No. 400’ [Derzhavni sanitarni normy ta pravyla “Hihiienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu” (DSanPiN 2.2.4-171-10): zatverdzheno nakazom Ministerstva okhorony zdorovia Ukrainy vid 12 travnia 2010 r. № 400], Official Herald of Ukraine [Ofitsiinyi visnyk Ukrainy], 51, art. 1717. Available at: [in Ukrainian].

MHUSSR (Ministry of Health of the Union of Soviet Socialist Republics) (1980) Assessment of the Impact of Harmful Chemical Compounds on the Skin and Substantiation of the Maximum Permissible Levels of Skin Contamination: methodological guidelines No. 2102-79 approved by the USSR Deputy Chief Public Health Officer of 11 November 1979 No. 5793-91’ [Otsenka vozdeystviya vrednykh khimicheskikh soedineniy na kozhnye pokrovy i obosnovanie predel’no dopustimykh urovney zagryazneniy kozhi: metodicheskie ukazaniya № 2102-79, utverzhdennye Zamestitelem Glavnogo Gosudarstvennogo sanitarnogo vracha SSSR 11 noyabrya 1979 g.]. Moscow: Ministry of Health of the USSR. [in Russian].

MHUSSR (Ministry of Health of the Union of Soviet Socialist Republics) (1991) Maximum Permissible Concentrations (MPC) and Approximate Permissible Levels (TAC) of Harmful Substances in the Water of Water Bodies of Domestic Drinking and Cultural and Community Water Use: approved by the order of the Ministry of Health of USSR of 11 July 1991 No. 5793-91 [Predel’no dopustimye kontsentratsii (PDK) i orientirovochnye dopustimye urovni (ODU) vrednykh veshchestv v vode vodnykh ob”ektov khozyaystvenno-pit’evogo i kul’turno-bytovogo vodopol’zovaniya: utverzhdeno prikazom Ministerstva zdravookhraneniya SSSR vid 11 iyulya 1991 g. № 5793-91]. Available at: [in Russian].

Mokienko, A. V. (2021) Chlorine Dioxide: Applications in Water Treatment Technologies [Dioksid khlora: primenenie v tekhnologiyakh vodopodgotovki]. 2nd ed. Odessa: Feniks. ISBN 9789669286468. Available at: [in Russian].

Mokienko, A. V. and Petrenko, N. F. (2008) ‘Hygienic estimation of virulicide action of chlorine dioxide and its relation to prior enteroviruses of drinking water and waster waters’ [Hihiienichna otsinka virulitsydnoi dii dioksydu khloru po vidnoshenniu do priorytetnykh enterovirusiv pytnoi vody ta stichnykh vod], Achievements of Biology and Medicine [Dosiahnennia biolohii ta medytsyny], 2, pp. 52–57. Available at: [in Ukrainian].

Mokienko, A. V., Petrenko, N. F. and Gozhenko, A. I. (2006) ‘Toxicologo-hygenical estimation of chlorine dioxide as facility of the disinfection of water (the review of the literature and result of the own studies)’ [Toksikologo-gigienicheskaya otsenka dioksida khlora kak sredstva obezzarazhivaniya vody (obzor literatury i rezul’tatov sobstvennykh issledovaniy)], Modern Problems of Toxicology [Sovremennye problemy toksikologii], 4, pp. 44–49. Available at: [in Russian].

Mokienko, A. V., Petrenko, N. F., Gozhenko, A. I. and Nasibulin, B. A. (2008) ‘Chlorine dioxide and drinking water. Validation of harmfulness (report 3). Estimation of chlorates signification as chlorine dioxide derivatives’ [Dioksid khlora i pit’evaya voda. K obosnovaniyu bezvrednosti (soobshchenie 3). Otsenka znachimosti khloratov kak proizvodnykh dioksida khlora], Modern Problems of Toxicology [Sovremennye problemy toksikologii], 3, pp. 28–32. Available at: [in Russian].

Moore, G. S. and Calabrese, E. J. (1980) ‘The effects of chlorine dioxide and sodium chlorite on erythrocytes of A/J and C57L/J mice’, Journal of Environmental Pathology and Toxicology, 4(2–3), pp. 513–524. PMID: 7462915.

Ngwenya, N., Ncube, E. J. and Parsons, J. (2013) ‘Recent advances in drinking water disinfection: successes and challenges’, in Whitacre, D. M. (ed.) Reviews of Environmental Contamination and Toxicology. New York: Springer, pp. 111–170. doi: 10.1007/978-1-4614-4717-7_4.

VRU (Verkhovna Rada Ukrainy) (2006) ‘Law of Ukraine No. 3447-IV of 21.02.2006 ‘About protection of animals from cruel treatment’ [Zakon Ukrainy № 3447-IV vid 21.02.2006 ‘Pro zakhyst tvaryn vid zhorstokoho povodzhennia’], News of the Verkhovna Rada of Ukraine [Vidomosti Verkhovnoi Rady Ukrainy], 27, art. 230. Available at: [in Ukrainian].

Yousef, M. I., Abuzreda, A. A. and Kamel, M. A. E.-N. (2019) ‘Neurotoxicity and inflammation induced by individual and combined exposure to iron oxide nanoparticles and silver nanoparticles’, Journal of Taibah University for Science, 13(1), pp. 570–578. doi: 10.1080/16583655.2019.1602351.