Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 8, Issue 1–2, May 2022, Pages 34–40

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)


Bohach M. V. 1, Selishcheva N. V. 1, Kovalenko L. V. 2, Orobchenko O. L. 2, Bohach D. M. 1

1 Odesa Research Station of the National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Odesa, Ukraine

2 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail:

Download PDF (print version)

Citation for print version: Bohach, M. V., Selishcheva, N. V., Kovalenko, L. V., Orobchenko, O. L. and Bohach, D. M. (2022) ‘State of metabolic processes in cattle under the influence of biotic contaminants of feed’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 8(1–2), pp. 34–40.

Download PDF (online version)

Citation for online version: Bohach, M. V., Selishcheva, N. V., Kovalenko, L. V., Orobchenko, O. L. and Bohach, D. M. (2022) ‘State of metabolic processes in cattle under the influence of biotic contaminants of feed’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 8(1–2), pp. 34–40. DOI: 10.36016/JVMBBS-2022-8-1-2-6.

Summary. Control of feed contamination by micromycetes and bacteria at all stages of their preparation, storage, and feeding of farm animals is an acute issue of feed safety and one of the principal measures that create an opportunity to prevent their negative impact on animal health. Therefore, the study aimed to investigate the state of metabolic processes in cattle of different physiological groups under the influence of biotic feed contaminants. The material for the research was grain fodder and coarse grinding grain of local production, roughage used on the farm. Veterinary and sanitary condition of grain products was established based on organoleptic, toxico-biological and microbiological studies. To determine the indicators of the state of metabolic processes, 3 groups of cows (n = 5–7) with different physiological conditions were formed: group I — non-pregnant cows, group II — pregnant animals with normal pregnancy, group III — cows after miscarriage. Biochemical parameters (level of total protein, albumin, globulins, vitamins A and E) in blood serum samples were determined spectrophotometrically by conventional methods. The study of the content of inorganic elements in the aggregate samples of bovine sera was performed using an X-ray spectrometer ‘Spectroscan MAX’. Laboratory studies have proven the presence of biotic contaminants in the feed base of the experimental farm. Exceedance of maximum permissible levels of feed contamination (max 16.50×104 CFU/g when MPL 5.0×104 CFU/g) by toxin-forming micromycetes (due to the genera Fusarium, Aspergillus, Penicillium, Mucor, and Rhizopus; a total of 24 isolates of microscopic fungi were isolated, which showed high toxicity in 11.3% and weak — in 20.1% of samples) and total bacterial contamination (max 18.7×105 CFU/g when MPL 5.0×105 CFU/g), in the structure of which coliform bacteria and Salmonella enterica were isolated. In cattle that consumed feed with an excess of biotic contaminants, disorders of the digestive tract (diarrhea) and reproductive capacity (abortions in the first half of pregnancy) were observed and metabolic disorders were found in cattle: increased Iron (on average 1.5 times) and Bromine (on average 1.6 times) levels, a decrease in the concentration of vitamin A (by 17.4–39.8%), and vitamin E (by 10.0–12.5%), most pronounced in cows after abortion and pregnant cows, respectively, Manganese (on average by 12.5%) and Selenium (by 30.7%)

Keywords: metabolic disorders, microbiological contamination, micromycetes, toxicity


Adhikari, M., Negi, B., Kaushik, N., Adhikari, A., Al-Khedhairy, A. A., Kaushik, N. K. and Choi, E. H. (2017) ‘T-2 mycotoxin: toxicological effects and decontamination strategies’, Oncotarget, 8(20), pp. 33933–33952. doi: 10.18632/oncotarget.15422.

Aguirre, J. D. and Culotta, V. C. (2012) ‘Battles with iron: Manganese in oxidative stress protection’, Journal of Biological Chemistry, 287(17), pp. 13541–13548. doi: 10.1074/jbc.R111.312181.

Boqvist, S., Söderqvist, K. and Vågsholm, I. (2018) ‘Food safety challenges and One Health within Europe’, Acta Veterinaria Scandinavica, 60(1), p. 1. doi: 10.1186/s13028-017-0355-3.

Chiesa, F., Tomassone, L., Savic, S., Bellato, A., Mihalca, A. D., Modry, D., Häsler, B. and De Meneghi, D. (2021) ‘A survey on One Health perception and experiences in Europe and neighboring areas’, Frontiers in Public Health, 9, p. 609949. doi: 10.3389/fpubh.2021.609949.

Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O. A., Mieszkin, S., Millet, L. J., Vajna, B., Junier, P., Bonfante, P., Krom, B. P., Olsson, S., van Elsas, J. D. and Wick, L. Y. (2018) ‘Bacterial–fungal interactions: Ecology, mechanisms and challenges’, FEMS Microbiology Reviews, 42(3), pp. 335–352. doi: 10.1093/femsre/fuy008.

Doletskyi, S. P. (2015) Theoretical and Clinical Experimental Substantiation of Cows’ Mineral Turnover Disorder Prevention in Biogeochemical Areas of Ukraine [Teoretychne ta kliniko-eksperymentalne obgruntuvannia profilaktyky porushen mineralnoho obminu v koriv u bioheokhimichnykh zonakh Ukrainy]. The dissertation thesis for the scientific degree of the doctor of veterinary sciences. Kyiv: The National University of Life and Environmental Sciences of Ukraine. Available at: [in Ukrainian].

Fernández-Lázaro, D., Fernandez-Lazaro, C. I., Mielgo-Ayuso, J., Navascués, L. J., Córdova Martínez, A. and Seco-Calvo, J. (2020) ‘The role of selenium mineral trace element in exercise: Antioxidant defense system, muscle performance, hormone response, and athletic performance. A systematic review’, Nutrients, 12(6), p. 1790. doi: 10.3390/nu12061790.

Gadzalo, Ya. M. (2017) ‘The quality and safety of animal products — a key component of food safety in Global Health/One Health OIE, WHO, FAO joint strategy’ [Vyrishennia problemy prodovolchoi bezpeky Ukrainy v konteksti realizatsii spilnoi stratehii MEB, VOOZ ta FAO ‘Iedyne zdorovia’], Veterinary medicine [Veterynarna medytsyna], 103, pp. 5‒7. Available at: [in Ukrainian].

Gonçalves, B. L., Corassin, C. H. and Oliveira, C. A. F. (2015) ‘Mycotoxicoses in dairy cattle: A review’, Asian Journal of Animal and Veterinary Advances, 10(11), pp. 752–760. doi: 10.3923/ajava.2015.752.760.

Harčárová, M., Čonková, E. and Sihelská, Z. (2018) ‘Mycobiota and mycotoxic contamination of feed cereals’, Folia Veterinaria, 62(4), pp. 5–11. doi: 10.2478/fv-2018-0031.

Kemboi, D. C., Antonissen, G., Ochieng, P. E., Croubels, S., Okoth, S., Kangethe, E. K., Faas, J., Lindahl, J. F. and Gathumbi, J. K. (2020) ‘A review of the impact of mycotoxins on dairy cattle health: Challenges for food safety and dairy production in Sub-Saharan Africa’, Toxins, 12(4), p. 222. doi: 10.3390/toxins12040222.

Kutsan, O. T., Orobchenko, O. L. and Kocherhin, Yu. A. (2014) Toxic and Biochemical Characteristics of Inorganic Elements and the Use of X-ray Fluorescence Analysis in Veterinary Medicine [Toksyko-biokhimichna kharakterystyka neorhanichnykh elementiv ta zastosuvannia renthenofluorestsentnoho analizu u veterynarnii medytsyni]. Kharkiv: Planeta-print. ISBN 9786177229017. [in Ukranian].

Kutsan, O., Orobchenko, O., Yaroshenko, M. and Gerilovych, I. (2020) ‘Assessment of the level of contamination of feed with micromycetes and mycotoxins in the cattle industry of Ukraine in recent years’ [Otsinka stupenia kontaminatsii mikromitsetamy ta mikotoksynamy kormiv u skotarskii haluzi Ukrainy za ostanni roky], Bulletin of Agricultural Science [Visnyk agrarnoi nauky], 98(2), pp. 52–57. doi: 10.31073/agrovisnyk202002-08. [in Ukrainian].

Levchenko, V. I. (ed.) (2010) Methods of Laboratory Clinical Diagnosis of Animal Diseases [Metody laboratornoi klinichnoi diahnostyky khvorob tvaryn]. Kyiv: Ahrarna osvita. ISBN 9789667906771. Available at: [in Ukrainian].

Malinin, O. A., Khmel’nitskiy, G. A. and Kutsan, A. T. (2002) Veterinary Toxicology [Veterinarnaya toksikologiya]. Korsun-Shevchenkivskyi: Maydachenko. ISBN 966830200X. [in Russian].

MAPFU (Ministry of Agrarian Policy and Food of Ukraine) (2012) ‘Order No. 131 from 19.03.2012 ‘On approval of the List of maximum permissible levels of undesirable substances in feed and feed materials for animals’’ [Nakaz № 131 vid 19.03.2012 ‘Pro zatverdzhennia Pereliku maksymalno dopustymykh rivniv nebazhanykh rechovyn u kormakh ta kormovii syrovyni dlia tvaryn’], Official Bulletin of Ukraine [Ofitsiinyi visnyk Ukrainy], 29, p. 86, art. 1081. Available at: [in Ukrainian].

Marczuk, J., Obremski, K., Lutnicki, K., Gajęcka, M. and Gajęcki, M. (2012) ‘Zearalenone and deoxynivalenol mycotoxicosis in dairy cattle herds’, Polish Journal of Veterinary Sciences, 15(2), pp. 365–372. doi: 10.2478/v10181-012-0055-x.

MVDMAUSSR (The Main Veterinary Department of the Ministry of Agriculture of the USSR) (1976) Rules for Bacteriological Examination of Feed: approved by the Main Veterinary Department of the Ministry of Agriculture of the USSR on 10 June 1975 [Pravila bakteriologicheskogo issledovaniya kormov: utverzhdeny Glavnym upravleniem veterinarii Ministerstva sel’skogo khozyaystva SSSR 10 iyunya 1975 g.]. Moscow: Kolos. [in Russian].

Obrazhei, A. F., Pohrebniak, L. I. and Korzunenko, O. F. (1998) Methodological Guidelines for Sanitary and Mycological Evaluation and Improvement of Feed Quality [Metodychni vkazivky po sanitarno-mikolohichnii otsintsi ta polipshennia yakosti kormiv]. Kyiv. [in Ukrainian].

Orobchenko, O. L. (2012) ‘Diagnosis of polymicroelement diseases of cattle under modern conditions of production’ [Diahnostyka polimikroelementoziv velykoi rohatoi khudoby za suchasnykh umov vyrobnytstva], Livestock of Ukraine [Tvarynnytstvo Ukrainy], 10, pp. 20–24. [in Ukrainian].

Parakhin, N. V., Kobozev, I. V., Gorbachev, I. V., Lazarev, N. I. and Mikhalev, S. S. (2006) Feed Production [Kormoproizvodstvo]. Moscow: KolosS. ISBN 5953203667. [in Russian].

Pidoplichko, N. M. and Mil’ko, A. A. (1971) Atlas of Mucoral Fungi [Atlas mukoral’nykh gribov]. Kyiv: Naukova dumka. [in Russian].

Sachko, R. G., Lesyk, Ja. V., Luchka, I. V. and Nevostruyeva, I. V. (2016) ‘Contents of heavy metals in food, organism and animal products in the Zacarpathian biogeochemical province’ [Vmist vazhkykh metaliv u kormakh, orhanizmi tvaryn ta produktsii tvarynnytstva v ahroekolohichnykh umovakh Zakarpattia], Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj. Series: Veterinary Sciences [Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho. Seriia: Veterynarni nauky], 18(3(71)), pp. 87–90. doi: 10.15421/nvlvet7120. [in Ukrainian].

Stegniy, B. T., Kovalenko, L. V., Ushkalov, V. O., Doletskyi, S. P., Romanko, M. Ye., Boiko, V. S., Matiusha, L. V. and Krotovska, Yu. M. (2007) Methods for Estimating the Intensity of Lipid Peroxidation and its Regulation in Biological Objects: Methodological Recommendations [Metody otsinky intensyvnosti perekysnoho okysnennia lipidiv ta yoho rehuliatsii u biolohichnykh ob’iektakh: metodychni rekomendatsii]. Kharkiv: NSC ‘Institute of Experimental and Clinical Veterinary Medicine’. [in Ukrainian].

Vandicke, J., De Visschere, K., Ameye, M., Croubels, S., De Saeger, S., Audenaert, K. and Haesaert, G. (2021) ‘Multi-mycotoxin contamination of maize silages in Flanders, Belgium: Monitoring mycotoxin levels from seed to feed’, Toxins, 13(3), p. 202. doi: 10.3390/toxins13030202.

Verma, S. and Cherayil, B. J. (2017) ‘Iron and inflammation — the gut reaction’, Metallomics, 9(2), pp. 101–111. doi: 10.1039/C6MT00282J.

Vlizlo, V. V. (ed.) (2012) Laboratory Methods of Research in Biology, Animal Husbandry and Veterinary Medicine [Laboratorni metody doslidzhen u biolohii, tvarynnytstvi ta veterynarnii medytsyni]. Lviv: Spolom. ISBN 9769666656776. [in Ukrainian].

Volkov, M. V. (2005) ‘Systemic mycotoxicological control of feed is a guarantee of prevention of mycotoxicosis in birds and animals’ [Systemnyi mikotoksykolohichnyi kontrol kormiv — harantiia profilaktyky mikotoksykoziv tvaryn ta ptytsi], Veterinary Medicine of Ukraine [Veterynarna medytsyna Ukrainy], 3. pp. 20‒22. [in Ukrainian].

Wakelin, S. A., Gerard, E., van Koten, C., Banabas, M., O’Callaghan, M. and Nelson, P. N. (2016) ‘Soil physicochemical properties impact more strongly on bacteria and fungi than conversion of grassland to oil palm’, Pedobiologia, 59(3), pp. 83–91. doi: 10.1016/j.pedobi.2016.03.001.

Wessling-Resnick, M. (2010) ‘Iron homeostasis and the inflammatory response’, Annual Review of Nutrition, 30(1), pp. 105–122. doi: 10.1146/annurev.nutr.012809.104804.

Wu, Q.-H., Wang, X., Yang, W., Nüssler, A. K., Xiong, L.-Y., Kuča, K., Dohnal, V., Zhang, X.-J. and Yuan, Z.-H. (2014) ‘Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update’, Archives of Toxicology, 88(7), pp. 1309–1326. doi: 10.1007/s00204-014-1280-0.

Yaroshenko, M. O. (2016). ‘Mold saprophytes — biotic contaminants feed as a possible source of fungal infections poultry’ [Plisenevi saprofity — biotychni kontaminanty kormiv yak mozhlyve dzherelo mikoziv silskohospodarskoi ptytsi], Veterinary Medicine [Veterynarna medytsyna], 102, pp. 235–240. Available at: [in Ukrainian].

Yaroshenko, M. O., Kutsan, O. T. and Orobchenko, O. L. (2018) ‘Monitoring of feeds for dairy cows of the daily stage on the availability of mold micromycets in the farms of the north-eastern region of Ukraine’ [Monitorynh kormiv dlia VRKh molochnoho napriamu produktyvnosti na naiavnist plisenevykh mikromitsetiv u hospodarstvakh pivnichno-skhidnoho rehionu Ukrainy], Veterinary Biotechnology [Veterynarna biotekhnolohiia], 32(2), pp. 602–610. Available at: [in Ukrainian].