Issue 1

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 1, Issue 1, March 2015, Pages 15–22

ISSN XXXX-XXXX (print version) ISSN ISSN 2411-0388 (online version)

CREATION MOLECULAR-GENETIC CONTROL SYSTEM OF PESTIVIRUS CONTAMINATION IN BIOTECHNOLOGY OBJECTS

Stegniy B. T., Goraichuk I. V., Gerilovych A. P., Kucheryavenko R. O., Bolotin V. I., Solodiankin O. S.

National Scientific Center “Institute of xperimental and Clinical Veterinary Medicine”, Kharkiv, Ukraine, e-mail: goraichuk@ukr.net, antger2011@gmail.com

Download PDF (print version)

Citation for print version: Stegniy, B. T., Goraichuk, I. V., Gerilovych, A. P., Kucheryavenko, R. O., Bolotin, V. I. and Solodiankin, O. S. (2015) ‘Creation molecular-genetic control system of Pestivirus contamination in biotechnology objects’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 1(1), pp. 15–22.

Download PDF (online version)

Citation for online version: Stegniy, B. T., Goraichuk, I. V., Gerilovych, A. P., Kucheryavenko, R. O., Bolotin, V. I. and Solodiankin, O. S. (2015) ‘Creation molecular-genetic control system of Pestivirus contamination in biotechnology objects’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 1(1), pp. 15–22. Available at: http://jvmbbs.kharkov.ua/archive/2015/volume1/issue1/jvmbbso2015011_015-022.pdf

Summary. This study aimed on (i) creation molecular-genetic control system of pestivirus contamination in biotechnology objects, (ii) identification of persistently infected with bovine viral diarrhea virus (BVDV) animals and (iii) genetic typing of selected BVDV isolates.

RNA extraction, cloning, polymerase chain reaction (PCR), real-time PCR, enzyme-linked immunosorbent assay, serum neutralization test, sequencing.

It was shown that we had constructed the recombinant plasmids with insertion Erns gene fragment (826 base pair) of BVDV-1 and BVDV-2. Also we had developed and optimized parameters of duplex PCR for the simultaneous indication Mollicutes DNA and BVDV RNA, with the possibility of nested PCR for further identification of BVDV genotypes. Specific BVDV antibodies were detected in 725 of 1042 (69.6 %) analyzed samples. In this study 5 persistently infected with BVDV animals were detected in farms B and C of Kharkiv region. The genetic typing of viral isolates revealed that only BVDV-1 viruses were present. The phylogenetic analysis confirmed two BVDV-1 subtypes, namely b and f and revealed that all viruses from the farm B of Kharkiv region and from biotechnological objects were typed as BVDV-1b, but virus from the farm C of Kharkiv region and farm of Kherson region were typed as BVDV-1f.

The obtained recombinant plasmids can be used as a positive control for PCR and test-system for control of pestivirus contamination in biotechnology objects. Our results indicated that the BVDV infection is widespread in cattle herds in the eastern Ukraine, that requires further applying of new approaches to improve the current situation.

Keywords: bovine viral diarrhea virus, pestivirus contamination, cloning, pTZ57R/T, restriction enzyme digestion analysis, ELISA, SNT, PCR, real-time PCR, genotyping, phylogenetic analysis.

References:

Bolin, S. R., Lim, A., Grotelueschen, D. M., McBeth, W. W. and Cortese, V. S. (2009) ‘Genetic characterization of bovine viral diarrhea viruses isolated from persistently infected calves born to dams vaccinated against bovine viral diarrhea virus before breeding’, American Journal of Veterinary Research, 70(1), pp. 86–91. doi: http://dx.doi.org/10.2460/ajvr.70.1.86

Boom, R., Sol, C. J., Salimans, M. M., Jansen, C. L., Wertheim-van Dillen, P. M. and van der Noordaa, J. (1990) ‘Rapid and simple method for purification of nucleic acids’, Journal of Clinical Microbiology, 28(3), pp. 495–503. Available at: http://jcm.asm.org/content/28/3/495.full.pdf

Canal, C. W., Strasser, M., Hertig, C., Masuda, A. and Peterhans, E. (1998) ‘Detection of antibodies to bovine viral diarrhoea virus (BVDV) and characterization of genomes of BVDV from Brazil’, Veterinary Microbiology, 63(2-4), pp. 85–97. doi: http://dx.doi.org/10.1016/s0378-1135(98)00232-6

Charleston, B., Fray, M. D., Baigent, S., Carr, B. V. and Morrison, W. I. (2001) ‘Establishment of persistent infection with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce type I interferon’, Journal of General Virology, 82(8), pp. 1893-1897. Available at: http://vir.sgmjournals.org/content/82/8/1893.full.pdf

Chase, C. C. L., Elmowalid, G. and Yousif, A. A. A. (2004) ‘The immune response to bovine viral diarrhea virus: a constantlychanging picture’, Veterinary Clinics of North America: Food Animal Practice, 20(1), pp. 95–114. doi: http://dx.doi.org/10.1016/j.cvfa.2003.11.004

Heinz, F. X., Collett, M. S., Purcell, R. H., Gould, E. A., Howard, C. R., Houghton, M., Moormann, R. J. M., Rice, C. M. and Thiel, H.-J. (2000) ‘Family Flaviviridae’ in van Regenmortel, C. M. F. M. H. V., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R. and Wickner, R. B. (eds) Virus taxonomy: Seventh report of the International Committee on Taxonomy of Viruses. San Diego, CA: Academic Press, pp. 859–878. ISBN 978-0-12-714181-7.

Hessman, B. E., Fulton, R. W., Sjeklocha, D. B., Murphy, T. A., Ridpath, J. F. and Payton, M. E. (2009) ‘Evaluation of economic effects and the health and performance of the general cattle population after exposure to cattle persistently infected with bovine viral diarrhea virus in a starter feedlot’, American Journal of Veterinary Research, 70(1), pp. 73–85. doi: http://dx.doi.org/10.2460/ajvr.70.1.73

Houe, H. (1999) ‘Epidemiological features and economical importance of bovine virus diarrhoea virus (BVDV) infections’, Veterinary Microbiology, 64(2-3), pp. 89–107. doi: http://dx.doi.org/10.1016/s0378-1135(98)00262-4

Jackova, A., Novackova, M., Pelletier, C., Audeval, C., Gueneau, E., Haffar, A., Petit, E., Rehby, L. and Vilcek, S. (2007) ‘The extended genetic diversity of BVDV-1: Typing of BVDV isolates from France’, Veterinary Research Communications, 32(1), pp. 7–11. doi: http://dx.doi.org/10.1007/s11259-007-9012-z

Kennedy, J. A. (2006) ‘Diagnostic efficacy of a reverse transcriptase–polymerase chain reaction assay to screen cattle for persistent bovine viral diarrhea virus infection’, Journal of the American Veterinary Medical Association, 229(9), pp. 1472–1474. doi: http://dx.doi.org/10.2460/javma.229.9.1472

Kong, F., James, G., Gordon, S., Zelynski, A. and Gilbert, G. L. (2001) ‘Species-specific PCR for identification of common contaminant mollicutes in cell culture’, Applied and Environmental Microbiology, 67(7), pp. 3195–3200. doi: http://dx.doi.org/10.1128/aem.67.7.3195-3200.2001

Larson, L. R., Grotelueschen, D. M., Brock, K. V., Hunsaker, B. D., Smith, R. A., Sprowls, R. W., MacGregor, D. S., Loneragan, G. H. and Dargatz, D. A. (2004) ‘Bovine Viral Diarrhea (BVD): Review for Beef Cattle Veterinarians’, Bovine Practitioner, 38(1), pp. 93–102. Available at: http://www.aabp.org/members/publications/2004/prac_feb_04/feb04_14.pdf

Nettleton, P. F. and Entrican, G. (1995) ‘Ruminant pestiviruses’, British Veterinary Journal, 151(6), pp. 615–642. doi: http://dx.doi.org/10.1016/s0007-1935(95)80145-6

Peterhans, E., Bachofen, C., Stalder, H. and Schweizer, M. (2010) ‘Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction’, Veterinary Research, 41(6), pp. 44–57. doi: http://dx.doi.org/10.1051/vetres/2010016

Sanger, F. (2001) ‘The early days of DNA sequences’, Nature Medicine, 7(3), pp. 267–268. doi: http://dx.doi.org/10.1038/85389

Ståhl, K. and Alenius, S. (2012) ‘BVDV control and eradication in Europe — an update’, Japanese Journal of Veterinary Research, 60(suppl.), pp. S31–S39. Available at: http://hdl.handle.net/2115/48530

Steck, F., Lazary, S., Fey, H., Wandeler, A., Huggler, C., Oppliger, G., Baumberger, H., Kaderli, R. and Martig, J. (1980) ‘Immune responsiveness in cattle fatally affected by bovine virus diarrhea-mucosal disease’, Zentralblatt für Veterinärmedizin Reihe B, 27(6), pp. 429–445. doi: http://dx.doi.org/10.1111/j.1439-0450.1980.tb01790.x

Studer, E., Bertoni, G. and Candrian, U. (2002) ‘Detection and characterization of Pestivirus contaminations in human live viral vaccines’, Biologicals, 30(4), pp. 289–296. doi: http://dx.doi.org/10.1006/biol.2002.0343

Sullivan, D. G. and Akkina, R. K. (1995) ‘A nested polymerase chain reaction assay to differentiate pestiviruses’, Virus Research, 38(2-3), pp. 231–239. doi: http://dx.doi.org/10.1016/0168-1702(95)00065-x

Sung, H., Kang, S. H., Bae, Y. J., Hong, J. T., Chung, Y. B., Lee, C. K. and Song, S. (2006) ‘PCR-based detection of Mycoplasma species’, Journal of Microbiology, 44(1), pp. 42–49. Available at: http://www.msk.or.kr/inc/download_FIDX.asp?FTYPE=5&FIDX=2338

Uphoff, C. C. and Drexler, H. G. (2002) ‘Detection of mycoplasma in leukemia–lymphoma cell lines using polymerase chain reaction’, Leukemia, 16(2), pp. 289–293. doi: http://dx.doi.org/10.1038/sj.leu.2402365

Van Kuppeveld, F. J., Van der Logt, J. T., Angulo, A. F., van Zoest, M. J., Quint, W. G., Niesters, H. G., Galama, J. M. and Melchers, W. J. (1992) ‘Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification’, Applied and Environmental Microbiology, 58(8), pp. 2606–2615. Available at: http://aem.asm.org/content/58/8/2606.full.pdf

Vilček, S., Herring, A. J., Herring, J. A., Nettleton, P. F., Lowings, J. P. and Paton, D. J. (1994) ‘Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis’, Archives of Virology, 136(3-4), pp. 309–323. doi: http://dx.doi.org/10.1007/BF01321060

Vilcek, S., Durkovic, B., Kolesárová, M., Greiser-Wilke, I. and Paton, D. (2004) ‘Genetic diversity of international bovine viral diarrhoea virus (BVDV) isolates: identification of a new BVDV-1 genetic group’, Veterinary Research, 35(5), pp. 609–615. doi: http://dx.doi.org/10.1051/vetres:2004036