Issue 3
Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
2, Issue 3, October 2016, Pages 12–18
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
PHYSIOLOGICAL AND BIOCHEmICAL
mECHANISmS Of CONTACT INTERACTION Of NANOPARTICLES Of GOLD WITH BACILLUS ANTHRACIS VACCINE STRAIN STERNE 34f2 CELLS
Roman’ko
M. E.
National
Scientific Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: toxi-lab@ukr.net
Download
PDF (print version)
Citation for print version: Roman’ko, M. E. (2016) ‘Physiological
and biochemical mechanisms of contact interaction of nanoparticles of gold with
Bacillus anthracis vaccine strain Sterne 34F2 cells’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 2(3), pp. 12–18.
Download
PDF (online version)
Citation for online version: Roman’ko, M. E. (2016) ‘Physiological
and biochemical mechanisms of contact interaction of nanoparticles of gold with
Bacillus anthracis vaccine strain Sterne 34F2 cells’, Journal for Veterinary Medicine, Biotechnology and
Biosafety. [Online] 2(3), pp. 12–18. Available at:
http://jvmbbs.kharkov.ua/archive/2016/volume2/issue3/oJVMBBS_2016023_012-018.pdf
Summary. The
article presents the results of experimental studies of mechanisms of Aurum
nanoparticles contact interaction on Bacillus
anthracis vaccine strain. This research was aimed
to study the physiological and biochemical mechanisms of influence of Aurum
nanoparticles (AuNP) on B. anthracis
cells (strain Sterne 34F2 —
productive vaccine strain). The cell cultures biomass of B. anthracis (strain Sterne 34F2)
was used as a model for our experiments. The sterile aqueous dispersion of Aurum nanoparticles with average
size 19.0±0.9 nm and initial concentration of 19.3 μg/cm3
for the metal was used for accumulation of B. anthracis
(strain Sterne 34F2) biomass and
with average size of 30.0±0.6 nm in initial concentration of
38.6 μg/cm3 and 77.2 μg/cm3 by the
metal — in experiments on the study of physiological and biochemical
mechanisms of interaction of cells. The effectiveness of the interaction
of B. anthracis cells (strain Sterne 34F2) with AuNP was evaluated
by a membrane filter method with a followed by determination of optical density
changes of mixture on a spectrophotometer. The value of H+‑ATPase
activity (KF 3.6.3.6) in total membrane fraction (TMF) bacterial cells was recorded by the accumulation of inorganic phosphorus (Pi).
Respiratory activity (RA) of B. anthracis
was measured by oxygen of electrode Clarks type.
Measured parameter was the maximum speed of reducing the concentration of
oxygen in the environment measurement, reduced to a unit of bacterial biomass. According to results of the impact of nanoparticles of Aurum (gold,
AuNP) for basic the physiological and biochemical indicators of B. anthracis cells (strain Sterne 34F2) appeared promising
metal nanoparticles in a concentration range 2.90–8.69 μg/cm3
for metal, as indicated by the presence of ATPase and respiratory activity
stimulation and is consistent with the highest accumulation of cells research
AuNP along with the intensification of proliferative activity of B. anthracis cells. The
mechanisms of gold accumulation in B. anthracis
cells have the metabolism-dependent nature which is characteristic only active
metabolized cells, and desplayed within our experiment involving certain assets
metabolism (determining role of the transmembrane potential and its
generators — ATPase, respiratory activity (RA)) in the overall
regulation of the metabolic system and functional organization (proliferation
activity) of the bacterial cells.
Keywords: Bacillus anthracis, bacterial cell, Aurum (gold) nanoparticles, contact interaction,
proliferative activity of H+‑ATPase activity, respiratory
activity
References:
Barth, H., Aktories, K., Popoff, M. R. and
Stiles, B. G. (2004) ‘Binary bacterial toxins: Biochemistry,
biology, and applications of common Clostridium and Bacillus proteins’, Microbiology
and Molecular Biology Reviews, 68(3), pp. 373–402. http://dx.doi.org/10.1128/mmbr.68.3.373-402.2004
Basnak’yan, I. A., Borovkova, V. M. and
Kuz’min, S. N. (1981) ‘Pathology and physiology of microbes’ [Patologiya i fiziologiya mikrobov], Journal of Microbiology, Epidemiology and immunobiology [Zhurnal mikrobiologii, epidemiologii i
immunobiologii], 9,
pp. 14–19. [in Russsian]
Cai, Q.‑Y., Kim, S. H., Choi, K. S.,
Byun, S. J., Kim, K. W., Park, S. H.,
Juhng, S. K. and Yoon, K.‑H. (2007) ‘Colloidal gold
nanoparticles as a blood-pool contrast agent for x-ray computed tomography in
mice’, Investigative Radiology, 42(12), pp. 797–806. http://dx.doi.org/10.1097/rli.0b013e31811ecdcd
Chen, P. C., Mwakwari, S. C. and Oyelere, A. K.
(2008) ‘Gold nanoparticles: From nanomedicine to nanosensing’, Nanotechnology,
Science and Applications, 1, pp. 45–65. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781743/pdf/nsa-1-45.pdf
Danylovych, G. V.,
Gruzina, T. G., Ulberg, Z. R. and Kosterin, S. O.
(2007) ‘Effect of ionic and colloid gold on
ATP-hydrolase fermentative systems in membrane of Bacillus sp. B4253
and Bacillus sp. B4851’ [Vplyv ionnoho ta koloidnoho zolota na ATR-hidrolazni fermentni
systemy v membrani mikroorhanizmiv Bacillus sp. B4253 ta Bacillus sp
V4851], The Ukrainian Biochemical Journal [Ukrainskii biokhimichnyi zhurnal],
79(4), pp. 46–53.
Available at: http://ubj.biochemistry.org.ua/images/stories/pdf/2007/UBJ_N4_2007/Danylovych_79_4.pdf.
[in Ukrainian]
De Roe, C., Courtoy, P. J. and Baudhuin, P. (1987) ‘A model
of protein-colloidal gold interactions’, Journal of Histochemistry and
Cytochemistry, 35(11), pp. 1191–1198. http://dx.doi.org/10.1177/35.11.3655323
Dibkova, S. M., Roman’ko, M. Ye.,
Gruzina, T. G., Reznichenko, L. S.,
Ushkalov, V. A. and Golovko, A. N. (2009) ‘Gold nanoparticles genotoxiciti’, The Ukrainian Biochemical Journal [Ukrainskii
biokhimichnyi zhurnal], 81(Suppl. 4), p. 291
Dybkova S. M. (2010) ‘Risk assessment of
microflora of gastrointestinal tract at gold and silver nanoparticles
expose’ [Otsinka stanu mikroflory shlunkovo-kyshkovoho traktu liudyny pry
dii nanochastynok zolota i sribla], Visnyk
problem biolohii ta medytsyny, 3, pp. 223–227. Available at: http://nbuv.gov.ua/UJRN/Vpbm_2010_3_48. [in Ukrainian]
Dybkova, S. M., Romanko, М. E., Gruzina, T. G., Rieznichenko, L. S.,
Ulberg, Z. R., Ushkalov, V. O. and Golovko, A. M.
(2009) ‘Determination of DNA damage by metal nanoparticles perspective
for biotechnology’ [Vyznachennia ushkodzhen DNK nanochastynkamy metaliv,
perspektyvnykh dlia biotekhnolohii], Biotechnologia
Acta, 2(3), pp. 80–85.
Available at: http://nbuv.gov.ua/UJRN/biot_2009_2_3_10.
[in Ukrainian]
Feng, L., Tianjun, L. and Li, W. (2008) ‘Synthesis,
characterization and cell-uptake of porphyrin-capped gold nanoparticle’, IFMBE
Proceedings, 19, pp. 186–189. http://dx.doi.org/10.1007/978-3-540-79039-6_48
Fiske, C. H. and Subbarow, Y. (1925) ‘The
colorimetric determination of phosphorus’, The Journal of Biological
Chemistry, 66(2), pp. 375–400. Available at: http://www.jbc.org/content/66/2/375.full.pdf
Fu, W., Shenoy, D., Li, J., Crasto, C.,
Jones, G., Dimarzio, C., Sridhar, S. and Amiji, M. (2005)
‘Hetero-bifunctional poly(ethylene glycol)
modified gold nanoparticles as an intracellular tracking and delivery
agent’, NSTI Nanotech 2005, Anaheim, US, May 8-12, 2005, Vol. 1.
pp. 324–327. ISBN 0976798506. Available at: http://www.nsti.org/publications/Nanotech/2005/pdf/1145.pdf
Hainfeld, J. F., Slatkin, D. N.,
Focella, T. M. and Smilowitz, H. M. (2006) ‘Gold
nanoparticles: A new x-ray contrast agent’, The British Journal of
Radiology, 79(939), pp. 248–253. http://dx.doi.org/10.1259/bjr/13169882
Holovko, A. M., Ushkalov, V. O.,
Machuskyi, O. V., Rieznichenko, L. S.,
Romanko M. Ye., Dybkova, S. M. and Babkin, M. V.
(2011) Method for production of biomass
of Bacillus anthracis with using of gold nanoparticles [Sposib otrymannia
biomasy Bacillus anthracis z vykorystanniam nanochastynok zolota]. Patent
no. UA 58450. Available at: http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=157494
Ipatenko, N. G. (ed.) (1996) Anthrax [Sibirskaya yazva].
2nd ed. Moscow: Kolos.
ISBN 5100032847. [in Russian]
Lakin, G. F. (1990) Biometry [Biometriya]. 4th ed. Moscow: Vysshaya shkola.
ISBN 5060004716. [in Russian]
Olsen, D. A. and Bernstein, D. (1989) Colloidal gold particle
concentration immunoassay. Patent no. US 4853335 A. Available at:
https://www.google.com/patents/US4853335
Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R. E. and
Tamarkin, L. (2004) ‘Colloidal gold: A novel nanoparticle vector for
tumor directed drug delivery’, Drug Delivery, 11(3),
pp. 169–183. http://dx.doi.org/10.1080/10717540490433895
Rawle, A. (1994) Basic principles of particle size analysis. Malvern Instruments. Available at: http://www.malvern.com/en/support/resource-center/application-notes/AN020710BasicPrinciplesPSA.aspx
Roman’ko, M. Ye. (2010) ‘Membrane-tropic effect of
Aurum and Argentum nanoparticles on the intensity of oxidative processes in Escherichia cells under the conditions
of their lyophilization/rehydration’ [Membranotropnyi vplyv nanochastynok
Aurumu ta Arhentumu na intensyvnist okysniuvalnykh
protsesiv u klitynakh Escherichia za
umov yikh liofilizatsii/rehidratatsii], The Animal Biology [Biolohiia tvaryn],
12(2), pp. 460–473. Available at: http://nbuv.gov.ua/UJRN/bitv_2010_12_2_79.
[in Ukrainian]
Roman’ko, M. Ye. (2012) ‘The use of gold
nanoparticles in biotechnology of production of cell biomass of
Enterobacteriaceae production strains after lyophilization/rehydration’
[Zastosuvannia nanochastok aurumu v biotekhnolohiiakh otrymannia biomasy klityn
enterobakterii vyrobnychykh shtamiv pislia yikh liofiliatsii/rehidratatsii], Proceeding of the II International
Seminar ‘Ethics in nanotechnology and nanosafety’ [Materialy
II mizhnarodnoho seminaru ‘Etyka nanotekhnolohii ta
nanobezpeka’], Kyiv, 10 October, pp. 57–59. [in Ukrainian]
Roman’ko, M. Ye., Machusskiy, A. V. and
Ushkalov, V. A. (2013) ‘Gold nanoparticles in biotechnology of Bacillus anthracis vaccine strain
biomass cultivation’ [Nanochastitsy zolota v biotekhnologiyakh
kul’tivirovaniya biomassy Bacillus
anthracis vaktsinnogo shtamma], B63 Biotechnology.
Looking to the future: II International Scientific Internet Conference:
Proceeding [B63 Biotekhnologiya. Vzglyad v budushchee. II Mezhdunarodnaya
nauchnaya internet-konferentsiya: materialy], Kazan, 26–27 March,
pp. 294–297. ISBN 9785906217141. [in
Russian]
Romanko, M. Ye., Boiko, V. S.,
Matiusha, L. V. and Ushkalov, V. O. (2010) ‘Membrane
of cells Escherichia as systemic
biomarker of estimation of biocompatibility and safety of nanomaterials’
[Membrana klityn Escherichia yak
systemnyi biomarker otsiniuvannia biosumisnosti ta bezpeky nanomaterialiv], Veterinary Medicine [Veterynarna medytsyna],
94, pp. 140–146. Available at: http://nbuv.gov.ua/UJRN/vetmed_2010_94_59.
[in Ukrainian]
Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R. and Sastry, M.
(2005) ‘Biocompatibility of gold nanoparticles and their endocytotic fate
inside the cellular compartment: A microscopic overview’, Langmuir,
21(23), pp. 10644–10654. http://dx.doi.org/10.1021/la0513712
Turnbull, P. (ed.) (2008) Anthrax in humans and animals. 4th ed. Geneva: World Health Organization.
ISBN 9789241547536. Available at: http://www.ncbi.nlm.nih.gov/books/NBK310486/pdf/Bookshelf_NBK310486.pdf
Ushkalov, V. O., Machutsky, O. V.,
Roman’ko, M. Y., Gruzina, T. G. and Reznichenko, L. S. (2011a) ‘Study of laboratory samples of Anthrax
vaccine, which were made from Bacillus
anthracis Sterne 34F2 [Vyvchennia imunohennoi aktyvnosti laboratornykh
zrazkiv vaktsyny proty sybirky tvaryn iz shtamu Bacillus anthracis Sterne 34F2]’, Veterinary Medicine
[Veterynarna medytsyna], 95, pp. 310–312. Available at: http://nbuv.gov.ua/UJRN/vetmed_2011_95_138.
[in Ukrainian]
Ushkalov, V., Machus’kyy, O., Roman’ko, M.,
Gruzina, T., Reznichenko, L., Koshelnik, V. and
Jakovleva, L. (2011b) ‘The results of the commission research of
Anthrax spore vaccine, produced on Bacillus
anthracis Sterne 34F2 strain [Rezultaty komisiinykh doslidzhen vaktsyny
proty sybirky tvaryn iz shtamu Bacillus
anthracis Sterne 34F2]’, The Scientific Bulletin of Veterinary
Medicine [Naukovyi visnyk veterynarnoi medytsyny], 83,
pp. 102–109. Available at: http://nvvm.net.ua/sites/default/files/visnyky/vet/veterenari%2083.pdf.
[in Ukrainian]
Zhang, S., Li, J., Lykotrafitis, G., Bao, G. and
Suresh, S. (2009) ‘Size-dependent endocytosis of
nanoparticles’, Advanced Materials, 21(4), pp. 419–424.
http://dx.doi.org/10.1002/adma.200801393