Issue 3
Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
2, Issue 3, October 2016, Pages 23–29
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
ImmuNOSENSORS fOR THE EXPRESS
DETECTION Of ANTIBIOTIC RESISTANT BACTERIAL PATHOGENS
Novgorodova
O. O., Starodub M. F., Ushkalov V. O.
National
University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, e-mail: oleksandra_n@yahoo.com
Download
PDF (print version)
Citation for print version: Novgorodova, O. O., Starodub, M. F. and
Ushkalov, V. O. (2016) ‘Immunosensors for the express detection of
antibiotic resistant bacterial pathogens’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 2(3),
pp. 23–29.
Download
PDF (online version)
Citation for online version: Novgorodova, O. O., Starodub, M. F. and
Ushkalov, V. O. (2016) ‘Immunosensors for the express detection of
antibiotic resistant bacterial pathogens’, Journal for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 2(3), pp. 23–29. Available at: http://jvmbbs.kharkov.ua/archive/2016/volume2/issue3/oJVMBBS_2016023_023-029.pdf
Summary. Resistant
microorganisms can spread rapidly over countries, regions and the world,
facilitated by global trade, travel and tourism. This problem concerns all
countries. The article is devoted to the analysis of methods for the indication
of bacterial pathogens. The authors compare the characteristics of the immune
biosensors based on the SPR, TIRE, photoluminescence and on the ISFETs with CeOx
gate surface and conclude that they have similar sensitivity and may provide to
achieve low cost of analysis.
Keywords: immunosensor,
bacteria, antibiotic resistant microorganisms, determination, antibody, antigen
References:
Abdelhamid, H. N. and Wu, H.‑F.
(2013) ‘Multifunctional graphene magnetic nanosheet decorated with
chitosan for highly sensitive detection of pathogenic bacteria’, Journal
of Materials Chemistry B, 1(32), pp. 3950–3961. http://dx.doi.org/10.1039/c3tb20413h
Abelès, F. (1976) ‘Surface electromagnetic
waves ellipsometry’, Surface Science, 56, pp. 237–251. http://dx.doi.org/10.1016/0039-6028(76)90450-7
Amaya-González, S., de‑los‑Santoslvarez, N.,
Miranda-Ordieres, A. and Lobo-Castañn, M. (2013)
‘Aptamer-based analysis: A promising alternative for food safety
control’, Sensors, 13(12), pp. 16292–16311. http://dx.doi.org/10.3390/s131216292
Angulo, F. J.,
Nargund, V. N. and Chiller, T. C. (2004) ‘Evidence of
an association between use of anti-microbial agents in food animals and
anti-microbial resistance among bacteria isolated from humans and the human
health consequences of such resistance’, Journal of Veterinary
Medicine Series B, 51(8–9), pp. 374–379. http://dx.doi.org/10.1111/j.1439-0450.2004.00789.x
Arwin, H., Poksinski, M. and
Johansen, K. (2004) ‘Total internal reflection ellipsometry:
Principles and applications’, Applied Optics, 43(15),
pp. 3028–3036. http://dx.doi.org/10.1364/ao.43.003028
Baleviciute, I., Balevicius, Z.,
Makaraviciute, A., Ramanaviciene, A. and Ramanavicius, A. (2013)
‘Study of antibody/antigen binding kinetics by total internal reflection
ellipsometry’, Biosensors and Bioelectronics, 39(1),
pp. 170–176. http://dx.doi.org/10.1016/j.bios.2012.07.017
Bryan, L. (1988) ‘General mechanisms
of resistance to antibiotics’, The Journal of Antimicrobial
Chemotherapy, 22(Suppl. A), pp. 1–15. http://dx.doi.org/10.1093/jac/22.Supplement_A.1
Buchanan, R. L. (2004)
‘Principles of risk analysis as applied to microbial food safety
concerns’, Mitteilungen aus Lebensmitteluntersuchung und Hygiene,
95(1), pp. 6–12. Available at: http://www.icmsf.org/pdf/006-012_Buchanan.pdf
Caras, S. and Janata, J. (1980)
‘Field effect transistor sensitive to penicillin’, Analytical
Chemistry, 52(12), pp. 1935–1937. http://dx.doi.org/10.1021/ac50062a035
Cimaglia, F., Aliverti, A.,
Chiesa, M., Poltronieri, P., De Lorenzis, E.,
Santino, A. and Sechi, L. A. (2012) ‘Quantum dots
nanoparticle-based lateral flow assay for rapid detection of Mycobacterium species using anti-fprA
antibodies’, Nanotechnology Development, 2(1), p. e5. http://dx.doi.org/10.4081/nd.2012.e5
Codex Committee on Food Hygiene (2001)
‘Discussion of a comprehensive multidisciplinary approach to risk
assessment on antimicrobial resistant bacteria in food’, FAO/WHO/WTO 34 th
Session, 8–13 October, Bangkok, Thailand
Codex Committee on Residues of Veterinary Drugs
in Foods (2001) ‘CX/RVDF 01/10: Discussion paper on antimicrobial
resistance and the use of antimicrobials in animal production’, FAO/WHO Food Standards Programme 13 th Session, 4–7 December.
Charleston, SC, USA. Available at: ftp://ftp.fao.org/codex/meetings/CCRVDF/ccrvdf13/rv01_10e.pdf
D’Urso, O. F.,
Poltronieri, P., Marsigliante, S., Storelli, C.,
Hernández, M. and Rodríguez-Lázaro, D. (2009)
‘A filtration-based real-time PCR method for the quantitative detection
of viable Salmonella enterica and Listeria monocytogenes in food
samples’, Food Microbiology, 26(3), pp. 311–316. http://dx.doi.org/10.1016/j.fm.2008.12.006
Dutt, S., Tanha, J., Evoy, S. and
Singh, A. (2013) ‘Immobilization of P22 Bacteriophage Tailspike
protein on Si surface for optimized salmonella capture’, Journal of
Analytical & Bioanalytical Techniques, Suppl. 7, p. 007. http://dx.doi.org/10.4172/2155-9872.s7-007
FAO (Food and Agriculture Organization) (2011) CAC/GL 77–2011: Guidelines for
risk analysis of foodborne antimicrobial resistance. Available at: http://www.fao.org/input/download/standards/CXG_077e.pdf
FAO (Food and Agriculture Organization) and WHO
(World Health Organization) (2015) ‘Codex texts on foodborne
antimicrobial resistance’, in: Codex
Alimentarius. Rome: FAO, WHO. Available at: http://www.fao.org/3/a-i4296t.pdf
GAO (United States General Accounting Office)
(2004) Antibiotic resistance: Federal
agencies need to better focus efforts to address risk to humans from antibiotic
use in animals. Report to congressional requested. Available at: http://www.gao.gov/new.items/d04490.pdf
Gu, B.,
Xu, C., Yang, C., Liu, S. and Wang, M. (2011) ‘ZnO
quantum dot labeled immunosensor for carbohydrate antigen 19‑9’, Biosensors
and Bioelectronics, 26(5), pp. 2720–2723. http://dx.doi.org/10.1016/j.bios.2010.09.031
Guo, C.,
Wang, J., Cheng, J. and Dai, Z. (2012) ‘Determination of
trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe
quantum dots coupled with enzyme inhibition’, Biosensors and
Bioelectronics, 36(1), pp. 69–74. http://dx.doi.org/10.1016/j.bios.2012.03.040
Ivnitski, D.,
Abdel-Hamid, I., Atanasov, P. and Wilkins, E. (1999)
‘Biosensors for detection of pathogenic bacteria’, Biosensors
and Bioelectronics, 14(7), pp. 599–624. http://dx.doi.org/10.1016/s0956-5663(99)00039-1
Iwata, T. and
Maeda, S. (2007) ‘Simulation of an absorption-based surface-plasmon
resonance sensor by means of ellipsometry’, Applied Optics, 46(9),
pp. 1575–1582. http://dx.doi.org/10.1364/ao.46.001575
Liana, D. D.,
Raguse, B., Gooding, J. J. and
Chow, E. (2012)
‘Recent advances in paper-based sensors’, Sensors, 12(12),
pp. 11505–11526. http://dx.doi.org/10.3390/s120911505
Liang, W.,
Liu, Z., Liu, S.,
Yang, J. and He, Y.
(2014) ‘A novel surface modification strategy of CdTe/CdS QDs and its
application for sensitive detection of ct‑dNA’, Sensors and
Actuators B: Chemical, 196, pp. 336–344. http://dx.doi.org/10.1016/j.snb.2014.02.026
Nabok, A.
(2016) ‘Comparative studies on optical biosensors for detection of
bio-toxins’, in: Nikolelis, D. P. and Nikoleli, G.‑P.
(eds.) Biosensors for Security and
Bioterrorism Applications. (Advanced Sciences and Technologies for Security
Applications). Switzerland: Springer International Publishing,
pp. 491–508. http://dx.doi.org/10.1007/978-3-319-28926-7_23
Nabok, A.,
Tsargorodskaya, A., Mustafa, M. K.,
Székács, A., Székács, I. and
Starodub, N. F. (2009) ‘Detection of low molecular weight
toxins using optical phase detection techniques’, Procedia Chemistry,
1(1), pp. 1491–1494. http://dx.doi.org/10.1016/j.proche.2009.07.372
Neu, H. C.
(1992) ‘The crisis in antibiotic resistance’, Science,
257(5073), pp. 1064–1073. http://dx.doi.org/10.1126/science.257.5073.1064
OIE (World
Organization for Animal Health) (2016) Animal
Production Food Safety. Available at: http://www.oie.int/en/food-safety/achievements-to-date
Paniel, N.,
Baudart, J., Hayat, A. and Barthelmebs, L. (2013)
‘Aptasensor and genosensor methods for detection of microbes in real
world samples’, Methods, 64(3), pp. 229–240. http://dx.doi.org/10.1016/j.ymeth.2013.07.001
Pividori, M. I.,
Aissa, A. B., Brandao, D., Carinelli, S. and
Alegret, S. (2016) ‘Magneto actuated biosensors for foodborne
pathogens and infection diseases affecting global health’, in:
Nikolelis, D. P. and Nikoleli, G.‑P. (eds.) Biosensors for Security and Bioterrorism
Applications. (Advanced Sciences and Technologies for Security
Applications). Switzerland: Springer International Publishing,
pp. 83–114. http://dx.doi.org/10.1007/978-3-319-28926-7_5
Pividori, M. I.,
Merkoçi, A., Barbé, J. and Alegret, S. (2003)
‘PCR-genosensor rapid test for detecting Salmonella’, Electroanalysis, 15(23–24),
pp. 1815–1823. http://dx.doi.org/10.1002/elan.200302764
Poltronieri, P.,
de Blasi, M. D. and D’Urso, O. F. (2009)’
Detection of Listeria monocytogenes
through real-time PCR and biosensor methods’, Plant, Soil and Environment, 55(9), pp. 363–369.
Available at: http://www.agriculturejournals.cz/publicFiles/11387.pdf
Qi, С, Gao, G. F.
and Jin, G. (2011) ‘Label-free biosensors for health
applications’, in: Serra, P. A. (ed.) Biosensors for Health, Environment and Biosecurity. InTech. http://dx.doi.org/10.5772/17103
Qian, Z. S.,
Shan, X. Y., Chai, L. J., Ma, J. J.,
Chen, J. R. and Feng, H. (2014) ‘DNA nanosensor based on
biocompatible graphene quantum dots and carbon nanotubes’, Biosensors
and Bioelectronics, 60, pp. 64–70. http://dx.doi.org/10.1016/j.bios.2014.04.006
Shah, J. and
Wilkins, E. (2003) ‘Electrochemical biosensors for detection of
biological warfare agents’, Electroanalysis, 15(3),
pp. 157–167. http://dx.doi.org/10.1002/elan.200390019
Starodub, N.
and Ogorodnijchuk Ju. (2012a) ‘Efficiency of immune biosensor based on
total internal reflection ellipsometry at the determination of Salmonella’, Proceedings of the 14 th International Meeting on Chemical Sensors, Germany, Nuremberg,
20–23 May, pp. 170–179. http://dx.doi.org/10.5162/IMCS2012/P1.1.24
Starodub, N. F. and
Ogorodnijchuk, J. O. (2012b) ‘Immune biosensor based on the
ISFETs for express determination of Salmonella
Typhimurium’, Electroanalysis, 24(3), pp. 600–606. http://dx.doi.org/10.1002/elan.201100539
Starodub, N. F.,
Ogorodniichuk, Yu. O. and Novgorodova, O. O. (2016)
‘Efficiency of instrumental analytical approaches at the control of
bacterial infections in water, foods and feed’, in:
Nikolelis, D. P. and Nikoleli, G.‑P. (eds.) Biosensors for Security and Bioterrorism
Applications. (Advanced Sciences and Technologies for Security
Applications). Switzerland: Springer International Publishing,
pp. 199–229. http://dx.doi.org/10.1007/978-3-319-28926-7_10
Starodub, N. F.,
Ogorodnijchuk, J. A. and Romanov, V. O. (2011)
‘Optical immune biosensor based on SPR for the detection of Salmonella Typhimurium’, SENSOR+TEST
Conferences 2011. Germany, Nuremberg, 7–9 June, 2011,
pp. 139–144. http://dx.doi.org/10.5162/opto11/op7
Starodub, N. F.,
Rachkov, O. E., Petik, A. V., Turkovskaja, G. V.,
Shul’ga, N. I. and Balkov, D. I. (1986)
‘Isolation of individual mRNA and immunochemical testing of products of
translation’, Proceedings—Methods of Molecular Biology,
II. Kiev: Naukova
dumka, pp. 90–99
Starodub, N. F., Pirogova, L. V.,
Demchenko, A. and Nabok, A. V. (2005) ‘Antibody
immobilisation on the metal and silicon surfaces. The use of self-assembled
layers and specific receptors’, Bioelectrochemistry,
66(1–2), pp. 111–115. http://dx.doi.org/10.1016/j.bioelechem.2004.04.007
Stead, S. (2014) ‘Analytical method
validation of food safety tests—Demonstrating fitness-for-purpose’,
Food Safety Magazine. Signature Series. Available at: http://www.foodsafetymagazine.com/signature-series/analytical-method-validation-of-food-safety-tests-demonstrating-fitness-for-purpose/
Sun, Y.‑S. (2014) ‘Optical
biosensors for label-free detection of biomolecular interactions’, Instrumentation
Science and Technology, 42(2), pp. 109–127. http://dx.doi.org/10.1080/10739149.2013.843060
Thakur, M. S. and
Ragavan, K. V. (2013) ‘Biosensors in food processing’, Journal
of Food Science and Technology, 50(4), pp. 625–641. http://dx.doi.org/10.1007/s13197-012-0783-z
Van der Schoot, B. H. and
Bergveld, P. (1987) ‘ISFET based enzyme sensors’, Biosensors,
3(3), pp. 161–186. http://dx.doi.org/10.1016/0265-928x(87)80025-1
Viter, R., Khranovskyy, V., Starodub, N., Ogorodniichuk, Y.,
Gevelyuk, S., Gertnere, Z., Poletaev, N., Yakimova, R.,
Erts, D., Smyntyna, V. and Ubelis, A. (2014) ‘Application
of room temperature photoluminescence from ZnO nanorods for Salmonella detection’, IEEE
Sensors Journal, 14(6), pp. 2028–2034. http://dx.doi.org/10.1109/jsen.2014.2309277
WHO (World Health Organization) (1997) WHO/EMC/ZOO/97.4: The medical impact of the
use of antimicrobials in food animals. Report of a WHO Meeting, Germany,
Berlin, 13–17 October. Switzerland, Geneva: WHO. Available at: http://www.who.int/foodsafety/publications/antimicrobials-food-animals
WHO (World Health Organization) (1998) WHO/EMC/ZDI/98.10: Use of quinolones in food
animals and potential impact on human health. Report of a WHO Meeting,
Switzerland, Geneva, 2–5 June. Switzerland, Geneva: WHO. Available
at: http://www.who.int/foodsafety/publications/quinolones
WHO (World Health Organization) (2011a) Enterohaemorrhagic Escherichia coli (EHEC).
Available at: http://www.who.int/mediacentre/factsheets/fs125
WHO (World Health Organization) (2011b) Foodborne zoonoses. Available at: http://www.who.int/zoonoses/diseases/foodborne_zoonoses
WHO (World Health Organization) (2015) A 68/20: Antimicrobial resistance: Draft global action plan on antimicrobial
resistance. Report by the Secretariat of 68 th
World Health Assembly, Switzerland, Geneva, 18–26 May. Switzerland,
Geneva: WHO. Available at: http://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_20-en.pdf
Xue, T., Cui, X., Guan, W., Wang, Q., Liu, C., Wang, H., Qi, K., Singh, D. J. and
Zheng, W. (2014)
‘Surface plasmon resonance technique for directly probing the interaction
of DNA and graphene oxide and ultra-sensitive biosensing’, Biosensors
and Bioelectronics, 58, pp. 374–379. http://dx.doi.org/10.1016/j.bios.2014.03.002
Zhang, J., Sun, Y., Xu, B.,
Zhang, H., Gao, Y. and Song, D. (2013)
‘A novel surface plasmon resonance biosensor based on graphene oxide
decorated with gold nanorod–antibody conjugates for determination of
transferrin’, Biosensors and Bioelectronics, 45,
pp. 230–236. http://dx.doi.org/10.1016/j.bios.2013.02.008