Issue 3

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 2, Issue 3, October 2016, Pages 23–29

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

ImmuNOSENSORS fOR THE EXPRESS DETECTION Of ANTIBIOTIC RESISTANT BACTERIAL PATHOGENS

Novgorodova O. O., Starodub M. F., Ushkalov V. O.

National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, e-mail: oleksandra_n@yahoo.com

Download PDF (print version)

Citation for print version: Novgorodova, O. O., Starodub, M. F. and Ushkalov, V. O. (2016) ‘Immunosensors for the express detection of antibiotic resistant bacterial pathogens’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 2(3), pp. 23–29.

Download PDF (online version)

Citation for online version: Novgorodova, O. O., Starodub, M. F. and Ushkalov, V. O. (2016) ‘Immunosensors for the express detection of antibiotic resistant bacterial pathogens’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 2(3), pp. 23–29. Available at: http://jvmbbs.kharkov.ua/archive/2016/volume2/issue3/oJVMBBS_2016023_023-029.pdf

Summary. Resistant microorganisms can spread rapidly over countries, regions and the world, facilitated by global trade, travel and tourism. This problem concerns all countries. The article is devoted to the analysis of methods for the indication of bacterial pathogens. The authors compare the characteristics of the immune biosensors based on the SPR, TIRE, photoluminescence and on the ISFETs with CeOx gate surface and conclude that they have similar sensitivity and may provide to achieve low cost of analysis.

Keywords: immunosensor, bacteria, antibiotic resistant microorganisms, determination, antibody, antigen

References:

Abdelhamid, H. N. and Wu, H.‑F. (2013) ‘Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria’, Journal of Materials Chemistry B, 1(32), pp. 3950–3961. http://dx.doi.org/10.1039/c3tb20413h

Abelès, F. (1976) ‘Surface electromagnetic waves ellipsometry’, Surface Science, 56, pp. 237–251. http://dx.doi.org/10.1016/0039-6028(76)90450-7

Amaya-González, S., de‑los‑Santoslvarez, N., Miranda-Ordieres, A. and Lobo-Castañn, M. (2013) ‘Aptamer-based analysis: A promising alternative for food safety control’, Sensors, 13(12), pp. 16292–16311. http://dx.doi.org/10.3390/s131216292

Angulo, F. J., Nargund, V. N. and Chiller, T. C. (2004) ‘Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance’, Journal of Veterinary Medicine Series B, 51(8–9), pp. 374–379. http://dx.doi.org/10.1111/j.1439-0450.2004.00789.x

Arwin, H., Poksinski, M. and Johansen, K. (2004) ‘Total internal reflection ellipsometry: Principles and applications’, Applied Optics, 43(15), pp. 3028–3036. http://dx.doi.org/10.1364/ao.43.003028

Baleviciute, I., Balevicius, Z., Makaraviciute, A., Ramanaviciene, A. and Ramanavicius, A. (2013) ‘Study of antibody/antigen binding kinetics by total internal reflection ellipsometry’, Biosensors and Bioelectronics, 39(1), pp. 170–176. http://dx.doi.org/10.1016/j.bios.2012.07.017

Bryan, L. (1988) ‘General mechanisms of resistance to antibiotics’, The Journal of Antimicrobial Chemotherapy, 22(Suppl. A), pp. 1–15. http://dx.doi.org/10.1093/jac/22.Supplement_A.1

Buchanan, R. L. (2004) ‘Principles of risk analysis as applied to microbial food safety concerns’, Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 95(1), pp. 6–12. Available at: http://www.icmsf.org/pdf/006-012_Buchanan.pdf

Caras, S. and Janata, J. (1980) ‘Field effect transistor sensitive to penicillin’, Analytical Chemistry, 52(12), pp. 1935–1937. http://dx.doi.org/10.1021/ac50062a035

Cimaglia, F., Aliverti, A., Chiesa, M., Poltronieri, P., De Lorenzis, E., Santino, A. and Sechi, L. A. (2012) ‘Quantum dots nanoparticle-based lateral flow assay for rapid detection of Mycobacterium species using anti-fprA antibodies’, Nanotechnology Development, 2(1), p. e5. http://dx.doi.org/10.4081/nd.2012.e5

Codex Committee on Food Hygiene (2001) ‘Discussion of a comprehensive multidisciplinary approach to risk assessment on antimicrobial resistant bacteria in food’, FAO/WHO/WTO 34 th Session, 8–13 October, Bangkok, Thailand

Codex Committee on Residues of Veterinary Drugs in Foods (2001) ‘CX/RVDF 01/10: Discussion paper on antimicrobial resistance and the use of antimicrobials in animal production’, FAO/WHO Food Standards Programme 13 th Session, 4–7 December. Charleston, SC, USA. Available at: ftp://ftp.fao.org/codex/meetings/CCRVDF/ccrvdf13/rv01_10e.pdf

D’Urso, O. F., Poltronieri, P., Marsigliante, S., Storelli, C., Hernández, M. and Rodríguez-Lázaro, D. (2009) ‘A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples’, Food Microbiology, 26(3), pp. 311–316. http://dx.doi.org/10.1016/j.fm.2008.12.006

Dutt, S., Tanha, J., Evoy, S. and Singh, A. (2013) ‘Immobilization of P22 Bacteriophage Tailspike protein on Si surface for optimized salmonella capture’, Journal of Analytical & Bioanalytical Techniques, Suppl. 7, p. 007. http://dx.doi.org/10.4172/2155-9872.s7-007

FAO (Food and Agriculture Organization) (2011) CAC/GL 77–2011: Guidelines for risk analysis of foodborne antimicrobial resistance. Available at: http://www.fao.org/input/download/standards/CXG_077e.pdf

FAO (Food and Agriculture Organization) and WHO (World Health Organization) (2015) ‘Codex texts on foodborne antimicrobial resistance’, in: Codex Alimentarius. Rome: FAO, WHO. Available at: http://www.fao.org/3/a-i4296t.pdf

GAO (United States General Accounting Office) (2004) Antibiotic resistance: Federal agencies need to better focus efforts to address risk to humans from antibiotic use in animals. Report to congressional requested. Available at: http://www.gao.gov/new.items/d04490.pdf

Gu, B., Xu, C., Yang, C., Liu, S. and Wang, M. (2011) ‘ZnO quantum dot labeled immunosensor for carbohydrate antigen 19‑9’, Biosensors and Bioelectronics, 26(5), pp. 2720–2723. http://dx.doi.org/10.1016/j.bios.2010.09.031

Guo, C., Wang, J., Cheng, J. and Dai, Z. (2012) ‘Determination of trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe quantum dots coupled with enzyme inhibition’, Biosensors and Bioelectronics, 36(1), pp. 69–74. http://dx.doi.org/10.1016/j.bios.2012.03.040

Ivnitski, D., Abdel-Hamid, I., Atanasov, P. and Wilkins, E. (1999) ‘Biosensors for detection of pathogenic bacteria’, Biosensors and Bioelectronics, 14(7), pp. 599–624. http://dx.doi.org/10.1016/s0956-5663(99)00039-1

Iwata, T. and Maeda, S. (2007) ‘Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry’, Applied Optics, 46(9), pp. 1575–1582. http://dx.doi.org/10.1364/ao.46.001575

Liana, D. D., Raguse, B., Gooding, J. J. and Chow, E. (2012) ‘Recent advances in paper-based sensors’, Sensors, 12(12), pp. 11505–11526. http://dx.doi.org/10.3390/s120911505

Liang, W., Liu, Z., Liu, S., Yang, J. and He, Y. (2014) ‘A novel surface modification strategy of CdTe/CdS QDs and its application for sensitive detection of ct‑dNA’, Sensors and Actuators B: Chemical, 196, pp. 336–344. http://dx.doi.org/10.1016/j.snb.2014.02.026

Nabok, A. (2016) ‘Comparative studies on optical biosensors for detection of bio-toxins’, in: Nikolelis, D. P. and Nikoleli, G.‑P. (eds.) Biosensors for Security and Bioterrorism Applications. (Advanced Sciences and Technologies for Security Applications). Switzerland: Springer International Publishing, pp. 491–508. http://dx.doi.org/10.1007/978-3-319-28926-7_23

Nabok, A., Tsargorodskaya, A., Mustafa, M. K., Székács, A., Székács, I. and Starodub, N. F. (2009) ‘Detection of low molecular weight toxins using optical phase detection techniques’, Procedia Chemistry, 1(1), pp. 1491–1494. http://dx.doi.org/10.1016/j.proche.2009.07.372

Neu, H. C. (1992) ‘The crisis in antibiotic resistance’, Science, 257(5073), pp. 1064–1073. http://dx.doi.org/10.1126/science.257.5073.1064

OIE (World Organization for Animal Health) (2016) Animal Production Food Safety. Available at: http://www.oie.int/en/food-safety/achievements-to-date

Paniel, N., Baudart, J., Hayat, A. and Barthelmebs, L. (2013) ‘Aptasensor and genosensor methods for detection of microbes in real world samples’, Methods, 64(3), pp. 229–240. http://dx.doi.org/10.1016/j.ymeth.2013.07.001

Pividori, M. I., Aissa, A. B., Brandao, D., Carinelli, S. and Alegret, S. (2016) ‘Magneto actuated biosensors for foodborne pathogens and infection diseases affecting global health’, in: Nikolelis, D. P. and Nikoleli, G.‑P. (eds.) Biosensors for Security and Bioterrorism Applications. (Advanced Sciences and Technologies for Security Applications). Switzerland: Springer International Publishing, pp. 83–114. http://dx.doi.org/10.1007/978-3-319-28926-7_5

Pividori, M. I., Merkoçi, A., Barbé, J. and Alegret, S. (2003) ‘PCR-genosensor rapid test for detecting Salmonella’, Electroanalysis, 15(23–24), pp. 1815–1823. http://dx.doi.org/10.1002/elan.200302764

Poltronieri, P., de Blasi, M. D. and D’Urso, O. F. (2009)’ Detection of Listeria monocytogenes through real-time PCR and biosensor methods’, Plant, Soil and Environment, 55(9), pp. 363–369. Available at: http://www.agriculturejournals.cz/publicFiles/11387.pdf

Qi, С, Gao, G. F. and Jin, G. (2011) ‘Label-free biosensors for health applications’, in: Serra, P. A. (ed.) Biosensors for Health, Environment and Biosecurity. InTech. http://dx.doi.org/10.5772/17103

Qian, Z. S., Shan, X. Y., Chai, L. J., Ma, J. J., Chen, J. R. and Feng, H. (2014) ‘DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes’, Biosensors and Bioelectronics, 60, pp. 64–70. http://dx.doi.org/10.1016/j.bios.2014.04.006

Shah, J. and Wilkins, E. (2003) ‘Electrochemical biosensors for detection of biological warfare agents’, Electroanalysis, 15(3), pp. 157–167. http://dx.doi.org/10.1002/elan.200390019

Starodub, M. F. and Starodub, V. M. (2000) ‘Immune sensors: sources of origination, achievements and perspectives’ [Imunosensory: vytoky vynyknennia, dosiahnennia ta perspektyvy], The Ukrainian Biochemical Journal [Ukrainskyi biokhimichnyi zhurnal], 72(4–5), pp. 143–163. [in Ukrainian]

Starodub, N. and Ogorodnijchuk Ju. (2012a) ‘Efficiency of immune biosensor based on total internal reflection ellipsometry at the determination of Salmonella’, Proceedings of the 14 th International Meeting on Chemical Sensors, Germany, Nuremberg, 20–23 May, pp. 170–179. http://dx.doi.org/10.5162/IMCS2012/P1.1.24

Starodub, N. F. and Ogorodnijchuk, J. O. (2012b) ‘Immune biosensor based on the ISFETs for express determination of Salmonella Typhimurium’, Electroanalysis, 24(3), pp. 600–606. http://dx.doi.org/10.1002/elan.201100539

Starodub, N. F., Nabok, A. V., Starodub, V. M., Ray, A. K. and Hassan, A. K. (2001) ‘Immobilization of biocomponents for immune optical sensor’, The Ukrainian Biochemical Journal [Ukrainskyi biokhimichnyi zhurnal], 73(4), pp. 55–64

Starodub, N. F., Ogorodniichuk, Yu. O. and Novgorodova, O. O. (2016) ‘Efficiency of instrumental analytical approaches at the control of bacterial infections in water, foods and feed’, in: Nikolelis, D. P. and Nikoleli, G.‑P. (eds.) Biosensors for Security and Bioterrorism Applications. (Advanced Sciences and Technologies for Security Applications). Switzerland: Springer International Publishing, pp. 199–229. http://dx.doi.org/10.1007/978-3-319-28926-7_10

Starodub, N. F., Ogorodnijchuk, J. A. and Romanov, V. O. (2011) ‘Optical immune biosensor based on SPR for the detection of Salmonella Typhimurium’, SENSOR+TEST Conferences 2011. Germany, Nuremberg, 7–9 June, 2011, pp. 139–144. http://dx.doi.org/10.5162/opto11/op7

Starodub, N. F., Rachkov, O. E., Petik, A. V., Turkovskaja, G. V., Shul’ga, N. I. and Balkov, D. I. (1986) ‘Isolation of individual mRNA and immunochemical testing of products of translation’, Proceedings—Methods of Molecular Biology, II. Kiev: Naukova dumka, pp. 90–99

Starodub, N. F., Pirogova, L. V., Demchenko, A. and Nabok, A. V. (2005) ‘Antibody immobilisation on the metal and silicon surfaces. The use of self-assembled layers and specific receptors’, Bioelectrochemistry, 66(1–2), pp. 111–115. http://dx.doi.org/10.1016/j.bioelechem.2004.04.007

Stead, S. (2014) ‘Analytical method validation of food safety tests—Demonstrating fitness-for-purpose’, Food Safety Magazine. Signature Series. Available at: http://www.foodsafetymagazine.com/signature-series/analytical-method-validation-of-food-safety-tests-demonstrating-fitness-for-purpose/

Sun, Y.‑S. (2014) ‘Optical biosensors for label-free detection of biomolecular interactions’, Instrumentation Science and Technology, 42(2), pp. 109–127. http://dx.doi.org/10.1080/10739149.2013.843060

Thakur, M. S. and Ragavan, K. V. (2013) ‘Biosensors in food processing’, Journal of Food Science and Technology, 50(4), pp. 625–641. http://dx.doi.org/10.1007/s13197-012-0783-z

Van der Schoot, B. H. and Bergveld, P. (1987) ‘ISFET based enzyme sensors’, Biosensors, 3(3), pp. 161–186. http://dx.doi.org/10.1016/0265-928x(87)80025-1

Viter, R., Khranovskyy, V., Starodub, N., Ogorodniichuk, Y., Gevelyuk, S., Gertnere, Z., Poletaev, N., Yakimova, R., Erts, D., Smyntyna, V. and Ubelis, A. (2014) ‘Application of room temperature photoluminescence from ZnO nanorods for Salmonella detection’, IEEE Sensors Journal, 14(6), pp. 2028–2034. http://dx.doi.org/10.1109/jsen.2014.2309277

WHO (World Health Organization) (1997) WHO/EMC/ZOO/97.4: The medical impact of the use of antimicrobials in food animals. Report of a WHO Meeting, Germany, Berlin, 13–17 October. Switzerland, Geneva: WHO. Available at: http://www.who.int/foodsafety/publications/antimicrobials-food-animals

WHO (World Health Organization) (1998) WHO/EMC/ZDI/98.10: Use of quinolones in food animals and potential impact on human health. Report of a WHO Meeting, Switzerland, Geneva, 2–5 June. Switzerland, Geneva: WHO. Available at: http://www.who.int/foodsafety/publications/quinolones

WHO (World Health Organization) (2011a) Enterohaemorrhagic Escherichia coli (EHEC). Available at: http://www.who.int/mediacentre/factsheets/fs125

WHO (World Health Organization) (2011b) Foodborne zoonoses. Available at: http://www.who.int/zoonoses/diseases/foodborne_zoonoses

WHO (World Health Organization) (2015) A 68/20: Antimicrobial resistance: Draft global action plan on antimicrobial resistance. Report by the Secretariat of 68 th World Health Assembly, Switzerland, Geneva, 18–26 May. Switzerland, Geneva: WHO. Available at: http://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_20-en.pdf

Xue, T., Cui, X., Guan, W., Wang, Q., Liu, C., Wang, H., Qi, K., Singh, D. J. and Zheng, W. (2014) ‘Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing’, Biosensors and Bioelectronics, 58, pp. 374–379. http://dx.doi.org/10.1016/j.bios.2014.03.002

Zhang, J., Sun, Y., Xu, B., Zhang, H., Gao, Y. and Song, D. (2013) ‘A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod–antibody conjugates for determination of transferrin’, Biosensors and Bioelectronics, 45, pp. 230–236. http://dx.doi.org/10.1016/j.bios.2013.02.008