Issue 2
Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
3, Issue 2, June 2017, Pages 37–44
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
ANALYSIS OF SNPS F279Y
AND S555G
IN GROWTH HORMONE RECEPTOR GENE IN BEEF AND DAIRY CATTLE BREEDS
Fedota O. M. 1 ,
Ruban S. Yu. 2 , Lysenko N. G. 1,*,
Goraichuk I. V. 3 , Tyzhnenko
T. V. 1 , Mitioglo L. V. 4 , Dzhus P. P. 5 , Birukova
O. D. 5
1 V. N. Karazin Kharkiv National University, Kharkiv,
Ukraine, e-mail: afedota@mail.ru
2 LLC ‘MPK Ekaterinoslavsky’, Dnipro,
Ukraine
3 National Scientific Center ‘Institute of Experimental and
Clinical Veterinary Medicine’, Kharkiv, Ukraine
4 DP DG ‘Nyva’,
Khrystynivka, Ukraine
5 Institute of Animal Breeding and Genetics
nd. a. M. V. Zubets of NAAS, Chubynske,
Ukraine
Download
PDF (print version)
Citation for print version: Fedota, O. M., Ruban, S. Yu., Lysenko, N. G., Goraichuk,
I. V., Tyzhnenko, T. V., Mitioglo,
L. V., Dzhus, P. P. and Birukova,
O. D. (2017) ‘Analysis of SNPS F279Y and S555G in growth
hormone receptor gene in beef and dairy cattle breeds’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 3(2), pp. 37–44.
Download
PDF (online version)
Citation for online version: Fedota, O. M., Ruban, S. Yu., Lysenko, N. G., Goraichuk,
I. V., Tyzhnenko, T. V., Mitioglo,
L. V., Dzhus, P. P. and Birukova,
O. D. (2017) ‘Analysis of SNPS F279Y and S555G in growth
hormone receptor gene in beef and dairy cattle breeds’, Journal for Veterinary Medicine, Biotechnology and
Biosafety. [Online] 3(2), pp. 37–44. Available at:
http://jvmbbs.kharkov.ua/archive/2017/volume3/issue2/oJVMBBS_2017032_037-044.pdf
Summary. Effect
of growth hormone on animal growth and metabolism is mediated
by interaction with the specific receptor (GHR). Marker-assisted selection
programs in cattle include SNPs in GHR gene regarding
their association with fertility and lactation performance. The aim was to analyze
the relation between SNPs F279Y and S555G in GHR
gene with growth traits in Aberdeen-Angus and tp draw comparisons with beef and dairy cattle of other
countries. SNP genotyping was
performed with PCR-RFLP methods. Statistical
methods included Pearson’s chi-squared test, Pearson’s correlation
coefficient r and ANOVA. The allele
and genotype frequencies of SNP F279Y (rs385640152; g. 914T>A)
are: T —
0.69 and A — 0.31; TT — 62.1%,
TA — 13.8% and AA — 24.1% (n = 58); SNP S555G (rs109300983;
g. 257A>G)
are: A — 0.86 and G — 0.14; AA — 73.1%, AG — 25.0% and GG — 1.9%
(n = 58). Population is in Hardy-Weinberg equilibrium for S555G, contrary
to F279Y. Animals
with AA-genotype of SNP F279Y are characterized by the higher ADG (+40–100 g/day), as well as body weight at 8 month
(+10–30 kg) and 2 years (up to +40 kg).
In total dairy breeds group the frequency of T‑allele in SNP F279Y negatively correlated with milk yield (r=–0.713).
Keywords: Aberdeen-Angus
breed, growth hormone receptor gene, SNP F279Y, SNP
S555G
References:
Atramentova,
L. A. and Utevskaya, A. M. (2008) Statistical methods in biology [Statisticheskie metody v biologii]. Gorlovka: Lіkhtar.
ISBN 9789662129267. [in Russian]
Beyshova,
I. S., Nametov, A. M. and Terletskiy,
V. P. (2016) ‘Development of genetic markers for productivity traits in
beef pedigree cattle of Auliekol and Kazakh white
head breeds’ [Razrabotka geneticheskikh
markerov dlya priznakov myasnoy produktivnosti plemennogo krupnogo rogatogo skota Auliekol’skoy i Kazakhskoy belogolovoy
porod], Veterinary,
Zootechnics and Biotechnology [Veterinariya,
zootekhniya i biotekhnologiya], 1, pp.
36–42. Available at: http://elibrary.ru/download/71223733.htm.
[in Russian]
Blott, S., Kim, J.-J., Moisio,
S., Schmidt-Küntzel, A., Cornet, A., Berzi, P., Cambisano, N., Ford,
C., Grisart, B., Johnson, D., Karim, L., Simon, P.,
Snell, R., Spelman, R., Wong, J., Vilkki, J.,
Georges, M., Farnir, F. and Coppieters,
W. (2003) ‘Molecular dissection of a quantitative trait locus: a
phenylalanine-to-tyrosine substitution in the transmembrane domain of the
bovine growth hormone receptor is associated with a major effect on milk yield
and composition’, Genetics,
163(1), pp. 253–266. Available at: http://www.genetics.org/content/163/1/253
Carsai,
C. T., Balteanu, A. V., Vlaic,
A. and Chakirou, O. (2013) ‘Polymorphism within
growth hormone receptor (GHR) gene in Romanian Black
and White and Romanian Grey Steppe cattle breeds’, Animal Biology and Animal Husbandry, 5(1), pp. 1–5. Available
at: http://www.abah.bioflux.com.ro/docs/2013.1-5.pdf
Di Stasio, L., Destefanis,
G., Brugiapaglia, A., Albera,
A. and Rolando, A. (2005) ‘Polymorphism of the GHR
gene in cattle and relationships with meat production and quality’, Animal Genetics, 36(2), pp.
138–140. http://dx.doi.org/https://doi.org/10.1111/j.1365-2052.2005.01244.x
Fontanesi,
L., Scotti, E., Tazzoli,
M., Beretti, F., Dall’Olio,
S., Davoli, R. and Russo, V. (2007)
‘Investigation of allele frequencies of the growth hormone receptor (GHR) F279Y mutation in dairy and
dual purpose cattle breeds’, Italian
Journal of Animal Science, 6(4), pp. 415–420. http://dx.doi.org/10.4081/ijas.2007.415
Ge,
W., Davis, M. E., Hines, H. C. and Irvin, K. M. (2000) ‘Rapid
communication: Single nucleotide polymorphisms detected in exon 10 of the
bovine growth hormone receptor gene’, Journal
of Animal Science, 78(8), pp. 2229–2230. http://dx.doi.org/10.2527/2000.7882229x
Ge,
W., Davis, M. E., Hines, H. C., Irvin, K. M. and Simmen,
R. C. M. (2003) ‘Association of single nucleotide polymorphisms in the
growth hormone and growth hormone receptor genes with blood serum insulin-like
growth factor I concentration and growth traits in Angus cattle’, Journal of Animal Science, 81(3), pp.
641–648. http://dx.doi.org/10.2527/2003.813641x
Gill, J. L., Bishop, S. C., McCorquodale, C.,
Williams, J. L. and Wiener, P. (2009) ‘Association of selected SNP with carcass and taste panel assessed meat quality
traits in a commercial population of Aberdeen Angus-sired beef cattle’, Genetics Selection Evolution, 41(1), pp.
36. http://dx.doi.org/10.1186/1297-9686-41-36
Hadi,
Z., Atashi, H., Dadpasand,
M., Derakhshandeh, A. and Ghahramani
Seno, M. M. (2015) ‘The relationship between growth hormone polymorphism
and growth hormone receptor genes with milk yield and reproductive performance
in Holstein dairy cows’, Iranian
Journal of Veterinary Research, 16(3), pp. 244–248. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782692/pdf/ijvr-16-244.pdf
Hradecká, E., Čítek, J., Panicke, L., Řehout, V. and Hanusová, L. (2008) ‘The relation of GH1, GHR and DGAT1
polymorphisms with estimated breeding values for milk production traits of
German Holstein sires’, Czech
Journal of Animal Science, 53(6), pp. 238–245. Available at: http://www.agriculturejournals.cz/publicFiles/01545.pdf
Komisarek,
J., Michalak, A. and Walendowska,
A. (2011) ‘The effects of polymorphisms in DGAT1,
GH and GHR genes on
reproduction and production traits in Jersey cows’, Animal Science Papers and Reports, 29(1), pp. 29–36.
Available at: http://archiwum.ighz.edu.pl/files/objects/7501/66/strona29-36.pdf
Nei,
M. (1972) ‘Genetic distance between populations’, The American Naturalist, 106(949), pp.
283–292. http://dx.doi.org/10.1086/282771
Oleński, K., Suchocki, T. and Kamiński,
S. (2010) ‘Inconsistency of associations between growth hormone receptor
gene polymorphism and milk performance traits in Polish Holstein-Friesian cows
and bulls’, Animal Science Papers
and Reports, 28(3), pp. 229–234. Available at: http://archiwum.ighz.edu.pl/files/objects/7507/66/str_229-234.pdf
Rahmatalla,
S. A., Müller, U., Strucken, E. M., Reissmann, M. and Brockmann, G.
A. (2011) ‘The F279Y polymorphism of the GHR gene and its relation to milk production and somatic
cell score in German Holstein dairy cattle’, Journal of Applied Genetics, 52(4), pp. 459–465. http://dx.doi.org/10.1007/s13353-011-0051-3
Sherman, E. L., Nkrumah, J. D., Murdoch,
B. M., Li, C., Wang, Z., Fu, A. and Moore, S. S. (2008) ‘Polymorphisms
and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin,
insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their
associations with measures of growth, performance, feed efficiency, and carcass
merit in beef cattle’, Journal of Animal
Science, 86(1), pp. 1–16. http://dx.doi.org/10.2527/jas.2006-799
Tait, R. G. Jr., Shackelford, S. D., Wheeler,
T. L, King, D. A., Casas, E., Thallman, R. M., Smith,
T. P. and Bennett, G. L. (2014) ‘μ-Calpain,
calpastatin, and growth hormone receptor genetic effects
on preweaning performance, carcass quality traits,
and residual variance of tenderness in Angus cattle selected to increase minor
haplotype and allele frequencies’, Journal
of Animal Science, 92(2), pp. 456–466. http://dx.doi.org/10.2527/jas.2013-7075
Viitala,
S., Szyda, J., Blott, S.,
Schulman, N., Lidauer, M., Mäki-Tanila,
A., Georges, M. and Vilkki, J. (2006) ‘The role
of the bovine growth hormone receptor and prolactin receptor genes in milk, fat
and protein production in Finnish Ayrshire dairy cattle’, Genetics, 173(4), pp. 2151-2164. http://dx.doi.org/10.1534/genetics.105.046730
Waters, S. M., McCabe, M. S., Howard, D. J., Giblin,
L., Magee, D. A., MacHugh, D. E. and Berry, D. P.
(2011) ‘Associations between newly discovered polymorphisms in the Bos taurus growth hormone
receptor gene and performance traits in Holstein-Friesian dairy cattle’, Animal Genetics, 42(1), pp. 39–49.
http://dx.doi.org/10.1111/j.1365-2052.2010.02087.x
White, S. N., Casas, E., Allan, M. F., Keele,
J. W., Snelling, W. M., Wheeler, T. L., Shackelford, S. D., Koohmaraie,
M. and Smith, T. P. L. (2007) ‘Evaluation in beef cattle of six
deoxyribonucleic acid markers developed for dairy traits reveals an osteopontin polymorphism associated with postweaning growth’, Journal of Animal Science, 85(1), pp. 1–10. http://dx.doi.org/10.2527/jas.2006-314