Issue 2

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 3, Issue 2, June 2017, Pages 37–44

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

ANALYSIS OF SNPS F279Y AND S555G IN GROWTH HORMONE RECEPTOR GENE IN BEEF AND DAIRY CATTLE BREEDS

Fedota O. M. 1 , Ruban S. Yu. 2 , Lysenko N. G. 1,*, Goraichuk I. V. 3 , Tyzhnenko T. V. 1 , Mitioglo L. V. 4 , Dzhus P. P. 5 , Birukova O. D. 5

1 V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, e-mail: afedota@mail.ru

2 LLC ‘MPK Ekaterinoslavsky’, Dnipro, Ukraine

3 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine

4 DP DG ‘Nyva’, Khrystynivka, Ukraine

5 Institute of Animal Breeding and Genetics nd. a. M. V. Zubets of NAAS, Chubynske, Ukraine

Download PDF (print version)

Citation for print version: Fedota, O. M., Ruban, S. Yu., Lysenko, N. G., Goraichuk, I. V., Tyzhnenko, T. V., Mitioglo, L. V., Dzhus, P. P. and Birukova, O. D. (2017) ‘Analysis of SNPS F279Y and S555G in growth hormone receptor gene in beef and dairy cattle breeds’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 3(2), pp. 37–44.

Download PDF (online version)

Citation for online version: Fedota, O. M., Ruban, S. Yu., Lysenko, N. G., Goraichuk, I. V., Tyzhnenko, T. V., Mitioglo, L. V., Dzhus, P. P. and Birukova, O. D. (2017) ‘Analysis of SNPS F279Y and S555G in growth hormone receptor gene in beef and dairy cattle breeds’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 3(2), pp. 37–44. Available at: http://jvmbbs.kharkov.ua/archive/2017/volume3/issue2/oJVMBBS_2017032_037-044.pdf

Summary. Effect of growth hormone on animal growth and metabolism is mediated by interaction with the specific receptor (GHR). Marker-assisted selection programs in cattle include SNPs in GHR gene regarding their association with fertility and lactation performance. The aim was to analyze the relation between SNPs F279Y and S555G in GHR gene with growth traits in Aberdeen-Angus and tp draw comparisons with beef and dairy cattle of other countries. SNP genotyping was performed with PCR-RFLP methods. Statistical methods included Pearson’s chi-squared test, Pearson’s correlation coefficient r and ANOVA. The allele and genotype frequencies of SNP F279Y (rs385640152; g. 914T>A) are: T — 0.69 and A — 0.31; TT — 62.1%, TA — 13.8% and AA — 24.1% (n = 58); SNP S555G (rs109300983; g. 257A>G) are: A — 0.86 and G — 0.14; AA — 73.1%, AG — 25.0% and GG — 1.9% (n = 58). Population is in Hardy-Weinberg equilibrium for S555G, contrary to F279Y. Animals with AA-genotype of SNP F279Y are characterized by the higher ADG (+40–100 g/day), as well as body weight at 8 month (+10–30 kg) and 2 years (up to +40 kg). In total dairy breeds group the frequency of T‑allele in SNP F279Y negatively correlated with milk yield (r=–0.713).

Keywords: Aberdeen-Angus breed, growth hormone receptor gene, SNP F279Y, SNP S555G

References:

Atramentova, L. A. and Utevskaya, A. M. (2008) Statistical methods in biology [Statisticheskie metody v biologii]. Gorlovka: Lіkhtar. ISBN 9789662129267. [in Russian]

Beyshova, I. S., Nametov, A. M. and Terletskiy, V. P. (2016) ‘Development of genetic markers for productivity traits in beef pedigree cattle of Auliekol and Kazakh white head breeds’ [Razrabotka geneticheskikh markerov dlya priznakov myasnoy produktivnosti plemennogo krupnogo rogatogo skota Auliekol’skoy i Kazakhskoy belogolovoy porod], Veterinary, Zootechnics and Biotechnology [Veterinariya, zootekhniya i biotekhnologiya], 1, pp. 36–42. Available at: http://elibrary.ru/download/71223733.htm. [in Russian]

Blott, S., Kim, J.-J., Moisio, S., Schmidt-Küntzel, A., Cornet, A., Berzi, P., Cambisano, N., Ford, C., Grisart, B., Johnson, D., Karim, L., Simon, P., Snell, R., Spelman, R., Wong, J., Vilkki, J., Georges, M., Farnir, F. and Coppieters, W. (2003) ‘Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition’, Genetics, 163(1), pp. 253–266. Available at: http://www.genetics.org/content/163/1/253

Carsai, C. T., Balteanu, A. V., Vlaic, A. and Chakirou, O. (2013) ‘Polymorphism within growth hormone receptor (GHR) gene in Romanian Black and White and Romanian Grey Steppe cattle breeds’, Animal Biology and Animal Husbandry, 5(1), pp. 1–5. Available at: http://www.abah.bioflux.com.ro/docs/2013.1-5.pdf

Di Stasio, L., Destefanis, G., Brugiapaglia, A., Albera, A. and Rolando, A. (2005) ‘Polymorphism of the GHR gene in cattle and relationships with meat production and quality’, Animal Genetics, 36(2), pp. 138–140. http://dx.doi.org/https://doi.org/10.1111/j.1365-2052.2005.01244.x

Fontanesi, L., Scotti, E., Tazzoli, M., Beretti, F., Dall’Olio, S., Davoli, R. and Russo, V. (2007) ‘Investigation of allele frequencies of the growth hormone receptor (GHR) F279Y mutation in dairy and dual purpose cattle breeds’, Italian Journal of Animal Science, 6(4), pp. 415–420. http://dx.doi.org/10.4081/ijas.2007.415

Ge, W., Davis, M. E., Hines, H. C. and Irvin, K. M. (2000) ‘Rapid communication: Single nucleotide polymorphisms detected in exon 10 of the bovine growth hormone receptor gene’, Journal of Animal Science, 78(8), pp. 2229–2230. http://dx.doi.org/10.2527/2000.7882229x

Ge, W., Davis, M. E., Hines, H. C., Irvin, K. M. and Simmen, R. C. M. (2003) ‘Association of single nucleotide polymorphisms in the growth hormone and growth hormone receptor genes with blood serum insulin-like growth factor I concentration and growth traits in Angus cattle’, Journal of Animal Science, 81(3), pp. 641–648. http://dx.doi.org/10.2527/2003.813641x

Gill, J. L., Bishop, S. C., McCorquodale, C., Williams, J. L. and Wiener, P. (2009) ‘Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle’, Genetics Selection Evolution, 41(1), pp. 36. http://dx.doi.org/10.1186/1297-9686-41-36

Hadi, Z., Atashi, H., Dadpasand, M., Derakhshandeh, A. and Ghahramani Seno, M. M. (2015) ‘The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein dairy cows’, Iranian Journal of Veterinary Research, 16(3), pp. 244–248. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782692/pdf/ijvr-16-244.pdf

Hradecká, E., Čítek, J., Panicke, L., Řehout, V. and Hanusová, L. (2008) ‘The relation of GH1, GHR and DGAT1 polymorphisms with estimated breeding values for milk production traits of German Holstein sires’, Czech Journal of Animal Science, 53(6), pp. 238–245. Available at: http://www.agriculturejournals.cz/publicFiles/01545.pdf

Komisarek, J., Michalak, A. and Walendowska, A. (2011) ‘The effects of polymorphisms in DGAT1, GH and GHR genes on reproduction and production traits in Jersey cows’, Animal Science Papers and Reports, 29(1), pp. 29–36. Available at: http://archiwum.ighz.edu.pl/files/objects/7501/66/strona29-36.pdf

Nei, M. (1972) ‘Genetic distance between populations’, The American Naturalist, 106(949), pp. 283–292. http://dx.doi.org/10.1086/282771

Oleński, K., Suchocki, T. and Kamiński, S. (2010) ‘Inconsistency of associations between growth hormone receptor gene polymorphism and milk performance traits in Polish Holstein-Friesian cows and bulls’, Animal Science Papers and Reports, 28(3), pp. 229–234. Available at: http://archiwum.ighz.edu.pl/files/objects/7507/66/str_229-234.pdf

Rahmatalla, S. A., Müller, U., Strucken, E. M., Reissmann, M. and Brockmann, G. A. (2011) ‘The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle’, Journal of Applied Genetics, 52(4), pp. 459–465. http://dx.doi.org/10.1007/s13353-011-0051-3

Sherman, E. L., Nkrumah, J. D., Murdoch, B. M., Li, C., Wang, Z., Fu, A. and Moore, S. S. (2008) ‘Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle’, Journal of Animal Science, 86(1), pp. 1–16. http://dx.doi.org/10.2527/jas.2006-799

Tait, R. G. Jr., Shackelford, S. D., Wheeler, T. L, King, D. A., Casas, E., Thallman, R. M., Smith, T. P. and Bennett, G. L. (2014) ‘μ-Calpain, calpastatin, and growth hormone receptor genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in Angus cattle selected to increase minor haplotype and allele frequencies’, Journal of Animal Science, 92(2), pp. 456–466. http://dx.doi.org/10.2527/jas.2013-7075

Viitala, S., Szyda, J., Blott, S., Schulman, N., Lidauer, M., Mäki-Tanila, A., Georges, M. and Vilkki, J. (2006) ‘The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle’, Genetics, 173(4), pp. 2151-2164. http://dx.doi.org/10.1534/genetics.105.046730

Waters, S. M., McCabe, M. S., Howard, D. J., Giblin, L., Magee, D. A., MacHugh, D. E. and Berry, D. P. (2011) ‘Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein-Friesian dairy cattle’, Animal Genetics, 42(1), pp. 39–49. http://dx.doi.org/10.1111/j.1365-2052.2010.02087.x

White, S. N., Casas, E., Allan, M. F., Keele, J. W., Snelling, W. M., Wheeler, T. L., Shackelford, S. D., Koohmaraie, M. and Smith, T. P. L. (2007) ‘Evaluation in beef cattle of six deoxyribonucleic acid markers developed for dairy traits reveals an osteopontin polymorphism associated with postweaning growth’, Journal of Animal Science, 85(1), pp. 1–10. http://dx.doi.org/10.2527/jas.2006-314