Issue 3
Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
3, Issue 3, September 2017, Pages 18–25
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
EFFECTS OF DIETARY BETAINE ON PRODUCTIVE TRAITS AND REPRODUCTIVE HEALTH OF
DAIRY COWS
Fedota O. M. 1,
Ruban S. Yu. 2,
Mitioglo L. V. 3,
Tyzhnenko T. V. 1, Gontar Yu. V. 4,
Lysenko N. G. 1
1 V. N. Karazin
Kharkiv National University, Kharkiv,
Ukraine, e-mail: amsfedota@gmail.com
2 LLC ‘MPK Ekaterinoslavsky’, Dnipro,
Ukraine
3 SE RF ‘Nyva’, Khrystynivka,
Ukraine
4 LLC ‘Medical Center IGR’,
Kyiv, Ukraine
Download
PDF (print version)
Citation for print version: Fedota, O. M., Ruban, S. Yu., Mitioglo, L. V., Tyzhnenko, T. V., Gontar Yu. V. and
Lysenko, N. G. (2017) ‘Effects of dietary betaine
on productive traits and reproductive health of dairy cows’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 3(3), pp. 18–25.
Download
PDF (online version)
Citation for online version: Fedota, O. M., Ruban, S. Yu., Mitioglo, L. V., Tyzhnenko, T. V., Gontar Yu. V. and
Lysenko, N. G. (2017) ‘Effects of dietary betaine
on productive traits and reproductive health of dairy cows’, Journal for Veterinary Medicine, Biotechnology and
Biosafety. [Online] 3(3), pp. 18–25. Available at: http://jvmbbs.kharkov.ua/archive/2017/volume3/issue3/oJVMBBS_2017033_018-025.pdf
Summary. Dietary supplementation of betaine may play an important role in productive and
reproductive parameters of dairy cows. The aim of this study was to define the
role of dietary betaine in dairy cows’
lactation. Cows were assigned to betaine
or control groups according to the ‘case-control’ study design.
Statistical methods included Pearson’s chi-squared and t criteria, Pearson and Spearman
correlation coefficient r and ANOVA. We observed positive results after betaine diet correction of milk and reproductive traits of
dairy cows in the heat stress conditions. Homocysteine
level in blood of dairy cows is not depend on the age of the animals (r =
0.09), on the amount of lactation (r = 0.04), on a period after calving
(r = –0.07). In this period higher milk yield was observed on lower homocysteine levels in the blood plasma of animals
(r = –0.32). Also we found out that more
inseminations were required for animals with a higher homocysteine
level in the plasma (r = 0.36). After betaine supplementation milk fat concentration was higher in betaine-treated group of cows compared with control cows
(3.05 vs 2.74%). Milk yield in betaine-treated group
was in the negative correlation with milk fat (r = –0.67). An
analysis of milk yields dynamics had showed that cows fed betaine
had more stable and predictable milk yields per milking than controls (8.3 vs
40%) and milk yield in BET group was in a negative correlation with milk fat
(r = –0,67). Negative dynamic of homocysteine
level was noticed in a betaine
group (27.5%) and positive (19.4%) — in the control group. More
inseminations were required for cows of control group (1.8 vs 1.2).
Keywords: dairy cows, one-carbon metabolism, homocysteine, betaine, milk traits, reproduction
References:
Altomare, I.,
Adler, A. and Aledort, L. M. (2007)
‘The 5, 10 methylenetetrahydrofolate reductase C677T mutation and risk of fetal loss: a case series and
review of the literature’, Thrombosis Journal, 5, p. 17. http://dx.doi.org/10.1186/1477-9560-5-17
Ardalan, M.,
Rezayazdi, K. and Dehghan-Banadaky, M.
(2010) ‘Effect of rumen-protected choline and methionine on physiological
and metabolic disorders and reproductive indices of dairy cows’, Journal
of Animal Physiology and Animal Nutrition, 94(6), pp. e259–e265. http://dx.doi.org/10.1111/j.1439-0396.2009.00966.x
Asim, A.,
Agarwal, S., Kulkarni, S. S. and Panigrahi, I.
(2015) ‘Folate metabolism and genetic variant in Down syndrome: a
meta-analysis’, Journal of Genetic Syndromes and Gene Therapy,
6(3), p. 1000270. http://dx.doi.org/10.4172/2157-7412.1000270
Atramentova, L. A.
and Utevskaya, A. M. (2008) Statistical methods in biology [Statisticheskie metody v biologii]. Gorlovka: Lіkhtar.
ISBN 9789662129267. [in Russian].
Başbuğan, Y., Yüksek, N. and Altuğ, N. (2015) ‘Significance of homocysteine and cardiac markers in cattle with hypocalcemia’, Turkish Journal of Veterinary and
Animal Sciences, 39(6), pp. 699–704. http://dx.doi.org/10.3906/vet-1505-101
Berker, B.,
Kaya, C., Aytac, R. and Satiroglu, H.
(2009) ‘Homocysteine concentrations in
follicular fluid are associated with poor oocyte and embryo qualities in
polycystic ovary syndrome patients undergoing assisted reproduction’, Human
Reproduction, 24(9), pp. 2293–2302. http://dx.doi.org/10.1093/humrep/dep069
Bertoia, M. L.,
Pai, J. K., Cooke, J. P., Joosten, M. M., Mittleman, M. A.,
Rimm, E. B. and Mukamal, K. J.
(2014) ‘Plasma homocysteine, dietary B
vitamins, betaine, and choline and risk of peripheral
artery disease’, Atherosclerosis, 235(1), pp. 94–101. http://dx.doi.org/10.1016/j.atherosclerosis.2014.04.010
Bertolo, R.
and McBreairty, L. (2013) ‘The nutritional
burden of methylation reactions’, Current Opinion in Clinical
Nutrition and Metabolic Care, 16(1), pp. 102–108. http://dx.doi.org/10.1097/mco.0b013e32835ad2ee
Cannizzo, C.,
Gianesella, M., Casella, S., Giudice, E., Stefani, A.,
Coppola, L. M. and Morgante, M. (2012)
‘Vitamin B12 and homocysteine
levels in blood of dairy cows during subacute ruminal acidosis’, Archiv Tierzucht, 55(3),
pp. 219–225. Available at: http://archtierz.fbn-dummerstorf.de/pdf/2012/at12p219.pdf
Chen, Y., Yang, Y., Miller, M., Shen, D., Shertzer, H., Stringer, K., Wang, B.,
Schneider, S., Nebert, D. and
Dalton, T. (2007) ‘Hepatocyte-specific Gclc deletion leads to rapid
onset of steatosis with mitochondrial injury and
liver failure’, Hepatology, 45(5),
pp. 1118–1128. http://dx.doi.org/10.1002/hep.21635
Ciaccio, M.,
Bivona, G. and Bellia, C.
(2008) ‘Therapeutical approach to plasma homocysteine and cardiovascular risk reduction’, Therapeutics
and Clinical Risk Management, 4(1),
pp. 219–224. http://dx.doi.org/10.2147/tcrm.s1807
Di Pierro, F., Orsi, R.
and Settembre, R. (2015) ‘Role of betaine in improving the antidepressant effect of S-adenosyl-methionine in patients with mild-to-moderate
depression’, Journal of Multidisciplinary Healthcare, 8,
pp. 39–45. http://dx.doi.org/10.2147/jmdh.s77766
Doolin, M.-T.,
Barbaux, S., McDonnell, M., Hoess, K., Whitehead, A. S. and
Mitchell, L. E. (2002) ‘Maternal genetic effects, exerted by
genes involved in homocysteine remethylation,
influence the risk of spina bifida’, American
Journal of Human Genetics, 71(5),
pp. 1222–1226. http://dx.doi.org/10.1086/344209
Eklund, M.,
Bauer, E., Wamatu, J. and Mosenthin, R. (2005) ‘Potential nutritional and
physiological functions of betaine in
livestock’, Nutrition Research Reviews, 18(1),
pp. 31–48. http://dx.doi.org/10.1079/nrr200493
Eskandari, Z.,
Sadrkhanlou, R.-A., Nejati, V.
and Tizro, G. (2016) ‘PCOS
women show significantly higher homocysteine level,
independent to glucose and E2
level’, International Journal of Reproductive Biomedicine, 14(8), pp. 495–500.
Available at: http://www.ssu.ac.ir/ijrm/index.php/ijrm/article/view/2036
Forges, T, Monnier-Barbarino, P,
Alberto, J. M., Guéant-Rodriguez, R. M.,
Daval, J. L. and Guéant, J. L.
(2007) ‘Impact of folate and homocysteine
metabolism on human reproductive health’, Human Reproduction Update, 13(3), pp. 225–238. http://dx.doi.org/10.1093/humupd/dml063
Guttormsen, A.,
Ueland, P., Nesthus, I.,
Nygård, O., Schneede, J.,
Vollset, S. and Refsum, H.
(1996) ‘Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> or = 40 micromol/liter). The Hordaland Homocysteine
Study’, Journal of Clinical Investigation, 98(9),
pp. 2174–2183. http://dx.doi.org/10.1172/jci119024
Hall, L. W. (2014) The evaluation of
dietary betaine, pre and probiotics, transitional
substrates, and β-mercaptoacetate on
physiological, metabolic, hormonal and production responses in lactating
Holstein cows subjected to thermal stress. A dissertation for the degree of
PhD. University of Arizona. Available at: http://hdl.handle.net/10150/333473
Hall, L., Dunshea, F.,
Allen, J., Rungruang, S., Collier, J.,
Long, N. and Collier, R. (2016) ‘Evaluation of dietary betaine in lactating Holstein cows subjected to heat
stress’, Journal of Dairy Science, 99(12),
pp. 9745–9753. http://dx.doi.org/10.3168/jds.2015-10514
Hansen, P. J. (2016)
‘Influence of dietary protein and amino acids on reproduction in dairy
cows’, WCDS Advances in Dairy Technology, 28,
pp. 209–216. Available at: https://wcds.ualberta.ca/Portals/138/Documents/Archive/2016/Manuscripts/p
209 - 218 Hansen.pdf
He, S., Zhao, S., Dai, S., Liu, D. and Bokhari, S. (2015) ‘Effects of dietary betaine on growth performance, fat deposition and serum
lipids in broilers subjected to chronic heat stress’, Animal Science
Journal, 86(10), pp. 897–903. http://dx.doi.org/10.1111/asj.12372
Ikeda, S., Sugimoto, M. and Kume, S.
(2012) ‘Importance of methionine metabolism in morula-to-blastocyst
transition in bovine preimplantation embryos’, Journal
of Reproduction and Development, 58(1), pp. 91–97. http://dx.doi.org/10.1262/jrd.11-096h
Jia, Y.,
Song, H., Gao, G., Cai, D.,
Yang, X. and Zhao, R. (2015) ‘Maternal betaine
supplementation during gestation enhances expression of mtDNA-encoded
genes through D-loop DNA hypomethylation in the
skeletal muscle of newborn piglets’, Journal
of Agricultural and Food Chemistry, 63(46), pp. 10152–10160. http://dx.doi.org/10.1021/acs.jafc.5b04418
Kalhan, S.
and Marczewski, S. (2012) ‘Methionine, homocysteine, one carbon metabolism and fetal
growth’, Reviews in Endocrine and Metabolic Disorders, 13(2),
pp. 109–119. http://dx.doi.org/10.1007/s11154-012-9215-7
Kharbanda, K.
(2009) ‘Alcoholic liver disease and methionine metabolism’, Seminars
in Liver Disease, 29(2), pp. 155–165. http://dx.doi.org/10.1055/s-0029-1214371
Kim, G., Weiss, S. and Levine, R. (2014)
‘Methionine oxidation and reduction in proteins’, Biochimica et Biophysica
Acta (BBA) - General Subjects, 1840(2),
pp. 901–905. http://dx.doi.org/10.1016/j.bbagen.2013.04.038
Li, C., Batistel, F.,
Osorio, J., Drackley, J., Luchini, D. and Loor, J.
(2016) ‘Peripartal rumen-protected methionine
supplementation to higher energy diets elicits positive effects on blood
neutrophil gene networks, performance and liver lipid content in dairy
cows’, Journal of Animal Science and Biotechnology, 7(1),
p. 18. http://dx.doi.org/10.1186/s40104-016-0077-9
Luchini, D. (2014) Transition cow nutrition on future reproduction performance.
Available at: https://www.progressivedairy.com/topics/feed-nutrition/transition-cow-nutrition-on-future-reproduction-performance
(Accessed: 17 May 2017).
Luo, S. and Levine, R. (2008) ‘Methionine in proteins
defends against oxidative stress’, The FASEB
Journal, 23(2), pp. 464–472. http://dx.doi.org/10.1096/fj.08-118414
Maclean, K., Jiang, H., Greiner, L., Allen, R. and Stabler, S. (2012) ‘Long-term betaine therapy in a murine model of cystathionine
beta-synthase deficient homocystinuria: Decreased
efficacy over time reveals a significant threshold effect between elevated homocysteine and thrombotic risk’, Molecular
Genetics and Metabolism, 105(3), pp. 395–403. http://dx.doi.org/10.1016/j.ymgme.2011.11.190
Maroto-Sánchez, B.,
Lopez-Torres, O., Palacios, G. and González-Gross, M.
(2016) ‘What do we know about homocysteine and
exercise? A review from the literature’, Clinical Chemistry and
Laboratory Medicine, 54(10), pp. 1561–1577. http://dx.doi.org/10.1515/cclm-2015-1040
Monteiro, A.,
Bernard, J., Guo, J., Weng, X.,
Emanuele, S., Davis, R., Dahl, G. and
Tao, S. (2017) ‘Effects of feeding betaine-containing
liquid supplement to transition dairy cows’, Journal of Dairy Science,
100(2), pp. 1063–1071. http://dx.doi.org/10.3168/jds.2016-11452
Moskovitz, J.,
Bar-Noy, S., Williams, W., Requena, J., Berlett, B.
and Stadtman, E. (2001) ‘Methionine sulfoxide reductase (MsrA) is a
regulator of antioxidant defense and lifespan in mammals’, Proceedings
of the National Academy of Sciences, 98(23), pp. 12920–12925. http://dx.doi.org/10.1073/pnas.231472998
Nakai, T.,
Sato, T., Teramura, M., Sadoya, H.,
Ohtani, M., Takahashi, T., Kida, K.
and Hidaka, S. (2013) ‘The effect of a continuous supply of betaine on the degradation of betaine
in the rumen of dairy cows’, Bioscience, Biotechnology, and Biochemistry,
77(3), pp. 666–669. http://dx.doi.org/10.1271/bbb.120839
Ocal, P.,
Ersoylu, B., Cepni, I.,
Guralp, O., Atakul, N.,
Irez, T. and Idil, M.
(2012) ‘The association between homocysteine in
the follicular fluid with embryo quality and pregnancy rate in assisted reproductive
techniques’, Journal of Assisted Reproduction and Genetics, 29(4),
pp. 299–304. http://dx.doi.org/10.1007/s10815-012-9709-y
Osorio, J., Ji, P., Drackley, J., Luchini, D.
and Loor, J. (2013) ‘Supplemental Smartamine M or MetaSmart
during the transition period benefits postpartal cow
performance and blood neutrophil function’, Journal of Dairy Science,
96(10), pp. 6248–6263. http://dx.doi.org/10.3168/jds.2012-5790
Peñagaricano, F., Souza, A., Carvalho, P.,
Driver, A., Gambra, R., Kropp, J.,
Hackbart, K., Luchini, D.,
Shaver, R., Wiltbank, M. and Khatib, H. (2013) ‘Effect of maternal methionine
supplementation on the transcriptome of bovine preimplantation embryos’, PLoS
ONE, 8(8), p. e72302. http://dx.doi.org/10.1371/journal.pone.0072302
Peterson, S., Rezamand, P.,
Williams, J., Price, W., Chahine, M.
and McGuire, M. (2012) ‘Effects of dietary betaine
on milk yield and milk composition of mid-lactation Holstein dairy cows’,
Journal of Dairy Science, 95(11), pp. 6557–6562. http://dx.doi.org/10.3168/jds.2011-4808
Rai, V.
(2011) Polymorphism in folate metabolic pathway gene as maternal risk factor
for Down syndrome’, International
Journal of Biological and Medical Research, 2(4), pp. 1055–1060.
Available at: https://www.biomedscidirect.com/journalfiles/IJBMRF2011393/polymorphism_in_folate_metabolic_pathway_gene_as_maternal_risk_factor_for_down_syndrome.pdf
Roblin, X.,
Germain, E., Phelip, J.,
Ducros, V., Pofelski, J.,
Heluwaert, F., Oltean, P.,
Faucheron, J. and Bonaz, B.
(2006) ‘Hyperhomocystéinémie et facteurs associés
au cours des MICI: étude prospective chez 81 patients’, La
Revue de Médecine Interne, 27(2),
pp. 106–110. http://dx.doi.org/10.1016/j.revmed. 2005.11.005.
[in French]
Saeed, M., Babazadeh, D., Naveed, M., Arain, M.,
Hassan, F. and Chao, S. (2017) ‘Reconsidering betaine as a natural anti-heat stress agent in poultry
industry: a review’, Tropical Animal Health and Production, 49(7),
pp. 1329–1338. http://dx.doi.org/10.1007/s11250-017-1355-z
Soder, K. and Holden, L. (1999)
‘Lymphocyte proliferation response of lactating dairy cows fed varying
concentrations of rumen-protected methionine’, Journal of Dairy Science, 82(9), pp. 1935–1942. http://dx.doi.org/10.3168/jds.s0022-0302(99)75429-9
Stadtman, E.,
Moskovitz, J., Berlett, B.
and Levine, R. (2002) Molecular and Cellular Biochemistry,
234/235(1), pp. 3–9. http://dx.doi.org/10.1023/a:1015916831583
Tao S., Monteiro, A. P. A.,
Weng, X.-S., Lapota, J.,
Dahl, G. E. and Bernard, J. K. (2016) ‘Managing heat
stress in transition cows and calves’, 2016 Virginia State Feed Association and Nutritional Management
“Cow” College, Roanoke, Virginia, USA,
17–19 February. Available at: https://www.vtdairy.dasc.vt.edu/content/dam/vtdairy_dasc_vt_edu/documents/cow-college/2016-cc/2016-02-19-tao-paper.pdf
Tao, S. and Dahl, G. (2013) ‘Invited review: Heat stress
effects during late gestation on dry cows and their calves’, Journal
of Dairy Science, 96(7), pp. 4079–4093. http://dx.doi.org/10.3168/jds.2012-6278
Thompson, I. and Dahl, G. (2012) ‘Dry-period seasonal
effects on the subsequent lactation’, The Professional Animal
Scientist, 28(6), pp. 628–631. http://dx.doi.org/10.15232/s1080-7446(15)30421-6
Vailati-Riboni, M., Zhou, Z., Jacometo, C., Minuti, A., Trevisi, E.,
Luchini, D. and Loor, J.
(2017) ‘Supplementation with rumen-protected methionine or choline during
the transition period influences whole-blood immune response in periparturient dairy cows’, Journal of Dairy
Science, 100(5), pp. 3958–3968. http://dx.doi.org/10.3168/jds.2016-11812
Vanilla, S., Dayanand, C. D., Kotur, P. F., Kutty, M. A.
and Vegi, P. K. (2015) ‘Evidence of
paternal N5, N10 - methylenetetrahydrofolate reductase (MTHFR)
C677T gene polymorphism in couples with recurrent
spontaneous abortions (RSAs) in Kolar
District- A South West of India’, Journal of Clinical and Diagnostic
Research, 9(2), pp. BC15–BC18. http://dx.doi.org/10.7860/jcdr/2015/10856.5579
Varela-Moreiras, G. (2001)
‘Nutritional regulation of homocysteine:
effects of drugs’, Biomedicine and Pharmacotherapy, 55(8),
pp. 448–453. http://dx.doi.org/10.1016/s0753-3322(01)00126-3
Xu, Y., Yan, C., Hao, Z.,
Zhou, J., Fan, S., Tai, S., Yang, C., Li, Z. and
Liang, C. (2016) ‘Association between BHMT
gene rs3733890 polymorphism and cancer risk: evidence
from a meta-analysis’, OncoTargets
and Therapy, 9,
pp. 5225–5233. http://dx.doi.org/10.2147/ott.s103901
Zeisel, S. H.
(2013) ‘Metabolic crosstalk between choline/1-carbon metabolism and
energy homeostasis’, Clinical Chemistry and Laboratory Medicine, 51(3), pp. 467–475. http://dx.doi.org/10.1515/cclm-2012-0518
Zetterberg, H., Regland, B., Palmér, M., Ricksten, A.,
Palmqvist, L., Rymo, L.,
Arvanitis, D. A., Spandidos, D. A.
and Blennow, K. (2002) ‘Increased
frequency of combined methylenetetrahydrofolate
reductase C677T and A1298C
mutated alleles in spontaneously aborted embryos’, European Journal of Human Genetics, 10(2), pp. 113–118. http://dx.doi.org/10.1038/sj/ejhg/5200767
Zhang, L., Ying, S., An, W., Lian, H., Zhou, G. and Han, Z. (2014)
‘Effects of dietary betaine supplementation
subjected to heat stress on milk performances and physiology indices in dairy
cow’, Genetics and Molecular Research, 13(3),
pp. 7577–7586. http://dx.doi.org/10.4238/2014.september.12.25