Issue 3

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 3, Issue 3, September 2017, Pages 18–25

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

EFFECTS OF DIETARY BETAINE ON PRODUCTIVE TRAITS AND REPRODUCTIVE HEALTH OF DAIRY COWS

Fedota O. M1, Ruban S. Yu. 2, Mitioglo L. V. 3, Tyzhnenko T. V. 1, Gontar Yu. V. 4, Lysenko N. G. 1

1 V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, e-mail: amsfedota@gmail.com

2 LLC ‘MPK Ekaterinoslavsky’, Dnipro, Ukraine

3 SE RFNyva’, Khrystynivka, Ukraine

4 LLC ‘Medical Center IGR’, Kyiv, Ukraine

Download PDF (print version)

Citation for print version: Fedota, O. M., Ruban, S. Yu., Mitioglo, L. V., Tyzhnenko, T. V., Gontar Yu. V. and Lysenko, N. G. (2017) ‘Effects of dietary betaine on productive traits and reproductive health of dairy cows’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 3(3), pp. 18–25.

Download PDF (online version)

Citation for online version: Fedota, O. M., Ruban, S. Yu., Mitioglo, L. V., Tyzhnenko, T. V., Gontar Yu. V. and Lysenko, N. G. (2017) ‘Effects of dietary betaine on productive traits and reproductive health of dairy cows’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 3(3), pp. 18–25. Available at: http://jvmbbs.kharkov.ua/archive/2017/volume3/issue3/oJVMBBS_2017033_018-025.pdf

Summary. Dietary supplementation of betaine may play an important role in productive and reproductive parameters of dairy cows. The aim of this study was to define the role of dietary betaine in dairy cows’ lactation. Cows were assigned to betaine or control groups according to the ‘case-control’ study design. Statistical methods included Pearson’s chi-squared and t criteria, Pearson and Spearman correlation coefficient r and ANOVA. We observed positive results after betaine diet correction of milk and reproductive traits of dairy cows in the heat stress conditions. Homocysteine level in blood of dairy cows is not depend on the age of the animals (r = 0.09), on the amount of lactation (r = 0.04), on a period after calving (r = –0.07). In this period higher milk yield was observed on lower homocysteine levels in the blood plasma of animals (r = –0.32). Also we found out that more inseminations were required for animals with a higher homocysteine level in the plasma (r = 0.36). After betaine supplementation milk fat concentration was higher in betaine-treated group of cows compared with control cows (3.05 vs 2.74%). Milk yield in betaine-treated group was in the negative correlation with milk fat (r = –0.67). An analysis of milk yields dynamics had showed that cows fed betaine had more stable and predictable milk yields per milking than controls (8.3 vs 40%) and milk yield in BET group was in a negative correlation with milk fat (r = –0,67). Negative dynamic of homocysteine level was noticed in a betaine group (27.5%) and positive (19.4%) — in the control group. More inseminations were required for cows of control group (1.8 vs 1.2).

Keywords: dairy cows, one-carbon metabolism, homocysteine, betaine, milk traits, reproduction

References:

Altomare, I., Adler, A. and Aledort, L. M. (2007) ‘The 5, 10 methylenetetrahydrofolate reductase C677T mutation and risk of fetal loss: a case series and review of the literature’, Thrombosis Journal, 5, p. 17. http://dx.doi.org/10.1186/1477-9560-5-17

Ardalan, M., Rezayazdi, K. and Dehghan-Banadaky, M. (2010) ‘Effect of rumen-protected choline and methionine on physiological and metabolic disorders and reproductive indices of dairy cows’, Journal of Animal Physiology and Animal Nutrition, 94(6), pp. e259e265. http://dx.doi.org/10.1111/j.1439-0396.2009.00966.x

Asim, A., Agarwal, S., Kulkarni, S.  S. and Panigrahi, I. (2015) ‘Folate metabolism and genetic variant in Down syndrome: a meta-analysis’, Journal of Genetic Syndromes and Gene Therapy, 6(3), p. 1000270. http://dx.doi.org/10.4172/2157-7412.1000270

Atramentova, L. A. and Utevskaya, A. M. (2008) Statistical methods in biology [Statisticheskie metody v biologii]. Gorlovka: Lіkhtar. ISBN 9789662129267. [in Russian].

Başbuğan, Y., Yüksek, N. and Altuğ, N. (2015) ‘Significance of homocysteine and cardiac markers in cattle with hypocalcemia’, Turkish Journal of Veterinary and Animal Sciences, 39(6), pp. 699–704. http://dx.doi.org/10.3906/vet-1505-101

Berker, B., Kaya, C., Aytac, R. and Satiroglu, H. (2009) ‘Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction’, Human Reproduction, 24(9), pp. 2293–2302. http://dx.doi.org/10.1093/humrep/dep069

Bertoia, M. L., Pai, J. K., Cooke, J. P., Joosten, M. M., Mittleman, M. A., Rimm, E. B. and Mukamal, K. J. (2014) ‘Plasma homocysteine, dietary B vitamins, betaine, and choline and risk of peripheral artery disease’, Atherosclerosis, 235(1), pp. 94–101. http://dx.doi.org/10.1016/j.atherosclerosis.2014.04.010

Bertolo, R. and McBreairty, L. (2013) ‘The nutritional burden of methylation reactions’, Current Opinion in Clinical Nutrition and Metabolic Care, 16(1), pp. 102–108. http://dx.doi.org/10.1097/mco.0b013e32835ad2ee

Cannizzo, C., Gianesella, M., Casella, S., Giudice, E., Stefani, A., Coppola, L. M. and Morgante, M. (2012) ‘Vitamin B12 and homocysteine levels in blood of dairy cows during subacute ruminal acidosis’, Archiv Tierzucht, 55(3), pp. 219–225. Available at: http://archtierz.fbn-dummerstorf.de/pdf/2012/at12p219.pdf

Chen, Y., Yang, Y., Miller, M., Shen, D., Shertzer, H., Stringer, K., Wang, B., Schneider, S., Nebert, D. and Dalton, T. (2007) ‘Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure’, Hepatology, 45(5), pp. 1118–1128. http://dx.doi.org/10.1002/hep.21635

Ciaccio, M., Bivona, G. and Bellia, C. (2008) ‘Therapeutical approach to plasma homocysteine and cardiovascular risk reduction’, Therapeutics and Clinical Risk Management, 4(1), pp. 219–224. http://dx.doi.org/10.2147/tcrm.s1807

Di Pierro, F., Orsi, R. and Settembre, R. (2015) ‘Role of betaine in improving the antidepressant effect of S-adenosyl-methionine in patients with mild-to-moderate depression’, Journal of Multidisciplinary Healthcare, 8, pp. 39–45. http://dx.doi.org/10.2147/jmdh.s77766

Doolin, M.-T., Barbaux, S., McDonnell, M., Hoess, K., Whitehead, A. S. and Mitchell, L. E. (2002) ‘Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida’, American Journal of Human Genetics, 71(5), pp. 1222–1226. http://dx.doi.org/10.1086/344209

Eklund, M., Bauer, E., Wamatu, J. and Mosenthin, R. (2005) ‘Potential nutritional and physiological functions of betaine in livestock’, Nutrition Research Reviews, 18(1), pp. 31–48. http://dx.doi.org/10.1079/nrr200493

Eskandari, Z., Sadrkhanlou, R.-A., Nejati, V. and Tizro, G. (2016) ‘PCOS women show significantly higher homocysteine level, independent to glucose and E2 level’, International Journal of Reproductive Biomedicine, 14(8), pp. 495–500. Available at: http://www.ssu.ac.ir/ijrm/index.php/ijrm/article/view/2036

Forges, T, Monnier-Barbarino, P, Alberto, J. M., Guéant-Rodriguez, R. M., Daval, J. L. and Guéant, J. L. (2007) ‘Impact of folate and homocysteine metabolism on human reproductive health’, Human Reproduction Update, 13(3), pp. 225–238. http://dx.doi.org/10.1093/humupd/dml063

Guttormsen, A., Ueland, P., Nesthus, I., Nygård, O., Schneede, J., Vollset, S. and Refsum, H. (1996) ‘Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> or = 40 micromol/liter). The Hordaland Homocysteine Study’, Journal of Clinical Investigation, 98(9), pp. 2174–2183. http://dx.doi.org/10.1172/jci119024

Hall, L. W. (2014) The evaluation of dietary betaine, pre and probiotics, transitional substrates, and β-mercaptoacetate on physiological, metabolic, hormonal and production responses in lactating Holstein cows subjected to thermal stress. A dissertation for the degree of PhD. University of Arizona. Available at: http://hdl.handle.net/10150/333473

Hall, L., Dunshea, F., Allen, J., Rungruang, S., Collier, J., Long, N. and Collier, R. (2016) ‘Evaluation of dietary betaine in lactating Holstein cows subjected to heat stress’, Journal of Dairy Science, 99(12), pp. 9745–9753. http://dx.doi.org/10.3168/jds.2015-10514

Hansen, P. J. (2016) ‘Influence of dietary protein and amino acids on reproduction in dairy cows’, WCDS Advances in Dairy Technology, 28, pp. 209–216. Available at: https://wcds.ualberta.ca/Portals/138/Documents/Archive/2016/Manuscripts/p 209 - 218 Hansen.pdf

He, S., Zhao, S., Dai, S., Liu, D. and Bokhari, S. (2015) ‘Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress’, Animal Science Journal, 86(10), pp. 897–903. http://dx.doi.org/10.1111/asj.12372

Ikeda, S., Sugimoto, M. and Kume, S. (2012) ‘Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos’, Journal of Reproduction and Development, 58(1), pp. 91–97. http://dx.doi.org/10.1262/jrd.11-096h

Jia, Y., Song, H., Gao, G., Cai, D., Yang, X. and Zhao, R. (2015) ‘Maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets’, Journal of Agricultural and Food Chemistry, 63(46), pp. 10152–10160. http://dx.doi.org/10.1021/acs.jafc.5b04418

Kalhan, S. and Marczewski, S. (2012) ‘Methionine, homocysteine, one carbon metabolism and fetal growth’, Reviews in Endocrine and Metabolic Disorders, 13(2), pp. 109–119. http://dx.doi.org/10.1007/s11154-012-9215-7

Kharbanda, K. (2009) ‘Alcoholic liver disease and methionine metabolism’, Seminars in Liver Disease, 29(2), pp. 155–165. http://dx.doi.org/10.1055/s-0029-1214371

Kim, G., Weiss, S. and Levine, R. (2014) ‘Methionine oxidation and reduction in proteins’, Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(2), pp. 901–905. http://dx.doi.org/10.1016/j.bbagen.2013.04.038

Li, C., Batistel, F., Osorio, J., Drackley, J., Luchini, D. and Loor, J. (2016) ‘Peripartal rumen-protected methionine supplementation to higher energy diets elicits positive effects on blood neutrophil gene networks, performance and liver lipid content in dairy cows’, Journal of Animal Science and Biotechnology, 7(1), p. 18. http://dx.doi.org/10.1186/s40104-016-0077-9

Luchini, D. (2014) Transition cow nutrition on future reproduction performance. Available at: https://www.progressivedairy.com/topics/feed-nutrition/transition-cow-nutrition-on-future-reproduction-performance (Accessed: 17 May 2017).

Luo, S. and Levine, R. (2008) ‘Methionine in proteins defends against oxidative stress’, The FASEB Journal, 23(2), pp. 464–472. http://dx.doi.org/10.1096/fj.08-118414

Maclean, K., Jiang, H., Greiner, L., Allen, R. and Stabler, S. (2012) ‘Long-term betaine therapy in a murine model of cystathionine beta-synthase deficient homocystinuria: Decreased efficacy over time reveals a significant threshold effect between elevated homocysteine and thrombotic risk’, Molecular Genetics and Metabolism, 105(3), pp. 395–403. http://dx.doi.org/10.1016/j.ymgme.2011.11.190

Maroto-Sánchez, B., Lopez-Torres, O., Palacios, G. and González-Gross, M. (2016) ‘What do we know about homocysteine and exercise? A review from the literature’, Clinical Chemistry and Laboratory Medicine, 54(10), pp. 1561–1577. http://dx.doi.org/10.1515/cclm-2015-1040

Monteiro, A., Bernard, J., Guo, J., Weng, X., Emanuele, S., Davis, R., Dahl, G. and Tao, S. (2017) ‘Effects of feeding betaine-containing liquid supplement to transition dairy cows’, Journal of Dairy Science, 100(2), pp. 1063–1071. http://dx.doi.org/10.3168/jds.2016-11452

Moskovitz, J., Bar-Noy, S., Williams, W., Requena, J., Berlett, B. and Stadtman, E. (2001) ‘Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals’, Proceedings of the National Academy of Sciences, 98(23), pp. 12920–12925. http://dx.doi.org/10.1073/pnas.231472998

Nakai, T., Sato, T., Teramura, M., Sadoya, H., Ohtani, M., Takahashi, T., Kida, K. and Hidaka, S. (2013) ‘The effect of a continuous supply of betaine on the degradation of betaine in the rumen of dairy cows’, Bioscience, Biotechnology, and Biochemistry, 77(3), pp. 666–669. http://dx.doi.org/10.1271/bbb.120839

Ocal, P., Ersoylu, B., Cepni, I., Guralp, O., Atakul, N., Irez, T. and Idil, M. (2012) ‘The association between homocysteine in the follicular fluid with embryo quality and pregnancy rate in assisted reproductive techniques’, Journal of Assisted Reproduction and Genetics, 29(4), pp. 299–304. http://dx.doi.org/10.1007/s10815-012-9709-y

Osorio, J., Ji, P., Drackley, J., Luchini, D. and Loor, J. (2013) ‘Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function’, Journal of Dairy Science, 96(10), pp. 6248–6263. http://dx.doi.org/10.3168/jds.2012-5790

Peñagaricano, F., Souza, A., Carvalho, P., Driver, A., Gambra, R., Kropp, J., Hackbart, K., Luchini, D., Shaver, R., Wiltbank, M. and Khatib, H. (2013) ‘Effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos’, PLoS ONE, 8(8), p. e72302. http://dx.doi.org/10.1371/journal.pone.0072302

Peterson, S., Rezamand, P., Williams, J., Price, W., Chahine, M. and McGuire, M. (2012) ‘Effects of dietary betaine on milk yield and milk composition of mid-lactation Holstein dairy cows’, Journal of Dairy Science, 95(11), pp. 6557–6562. http://dx.doi.org/10.3168/jds.2011-4808

Rai, V. (2011) Polymorphism in folate metabolic pathway gene as maternal risk factor for Down syndrome’, International Journal of Biological and Medical Research, 2(4), pp. 1055–1060. Available at: https://www.biomedscidirect.com/journalfiles/IJBMRF2011393/polymorphism_in_folate_metabolic_pathway_gene_as_maternal_risk_factor_for_down_syndrome.pdf

Roblin, X., Germain, E., Phelip, J., Ducros, V., Pofelski, J., Heluwaert, F., Oltean, P., Faucheron, J. and Bonaz, B. (2006) ‘Hyperhomocystéinémie et facteurs associés au cours des MICI: étude prospective chez 81 patients’, La Revue de Médecine Interne, 27(2), pp. 106–110. http://dx.doi.org/10.1016/j.revmed. 2005.11.005. [in French]

Saeed, M., Babazadeh, D., Naveed, M., Arain, M., Hassan, F. and Chao, S. (2017) ‘Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review’, Tropical Animal Health and Production, 49(7), pp. 1329–1338. http://dx.doi.org/10.1007/s11250-017-1355-z

Soder, K. and Holden, L. (1999) ‘Lymphocyte proliferation response of lactating dairy cows fed varying concentrations of rumen-protected methionine’, Journal of Dairy Science, 82(9), pp. 1935–1942. http://dx.doi.org/10.3168/jds.s0022-0302(99)75429-9

Stadtman, E., Moskovitz, J., Berlett, B. and Levine, R. (2002) Molecular and Cellular Biochemistry, 234/235(1), pp. 3–9. http://dx.doi.org/10.1023/a:1015916831583

Tao S., Monteiro, A. P. A., Weng, X.-S., Lapota, J., Dahl, G. E. and Bernard, J. K. (2016) ‘Managing heat stress in transition cows and calves’, 2016 Virginia State Feed Association and Nutritional Management “Cow” College, Roanoke, Virginia, USA, 17–19 February. Available at: https://www.vtdairy.dasc.vt.edu/content/dam/vtdairy_dasc_vt_edu/documents/cow-college/2016-cc/2016-02-19-tao-paper.pdf

Tao, S. and Dahl, G. (2013) ‘Invited review: Heat stress effects during late gestation on dry cows and their calves’, Journal of Dairy Science, 96(7), pp. 4079–4093. http://dx.doi.org/10.3168/jds.2012-6278

Thompson, I. and Dahl, G. (2012) ‘Dry-period seasonal effects on the subsequent lactation’, The Professional Animal Scientist, 28(6), pp. 628–631. http://dx.doi.org/10.15232/s1080-7446(15)30421-6

Vailati-Riboni, M., Zhou, Z., Jacometo, C., Minuti, A., Trevisi, E., Luchini, D. and Loor, J. (2017) ‘Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows’, Journal of Dairy Science, 100(5), pp. 3958–3968. http://dx.doi.org/10.3168/jds.2016-11812

Vanilla, S., Dayanand, C. D., Kotur, P. F., Kutty, M. A. and Vegi, P. K. (2015) ‘Evidence of paternal N5, N10 - methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism in couples with recurrent spontaneous abortions (RSAs) in Kolar District- A South West of India’, Journal of Clinical and Diagnostic Research,  9(2), pp. BC15BC18. http://dx.doi.org/10.7860/jcdr/2015/10856.5579

Varela-Moreiras, G. (2001) ‘Nutritional regulation of homocysteine: effects of drugs’, Biomedicine and Pharmacotherapy, 55(8), pp. 448–453. http://dx.doi.org/10.1016/s0753-3322(01)00126-3

Xu, Y., Yan, C., Hao, Z., Zhou, J., Fan, S., Tai, S., Yang, C., Li, Z. and Liang, C. (2016) ‘Association between BHMT gene rs3733890 polymorphism and cancer risk: evidence from a meta-analysis’, OncoTargets and Therapy, 9, pp. 5225–5233. http://dx.doi.org/10.2147/ott.s103901

Zeisel, S. H. (2013) ‘Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis’, Clinical Chemistry and Laboratory Medicine, 51(3), pp. 467–475. http://dx.doi.org/10.1515/cclm-2012-0518

Zetterberg, H., Regland, B., Palmér, M., Ricksten, A., Palmqvist, L., Rymo, L., Arvanitis, D. A., Spandidos, D. A. and Blennow, K. (2002) ‘Increased frequency of combined methylenetetrahydrofolate reductase C677T and A1298C mutated alleles in spontaneously aborted embryos’, European Journal of Human Genetics, 10(2), pp. 113–118. http://dx.doi.org/10.1038/sj/ejhg/5200767

Zhang, L., Ying, S., An, W., Lian, H., Zhou, G. and Han, Z. (2014) ‘Effects of dietary betaine supplementation subjected to heat stress on milk performances and physiology indices in dairy cow’, Genetics and Molecular Research, 13(3), pp. 7577–7586. http://dx.doi.org/10.4238/2014.september.12.25