Issue 4

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 3, Issue 4, December 2017, Pages 5–9

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

DEVELOPMENT OF PCR-TEST SYSTEMS FOR SPECIES DIFFERENTIATION OF CHLAMIDIOSIS AGENTS IN FELIDAE FAMILY AND RODENTS ORDER

Кsyonz І. М. 1, Korniyenko M. V. 2

1 Institute of Pig Breeding and Agroindustrial Production of the National Academy of Agrarian Sciences of Ukraine, Poltava, Ukraine, e-mail: igor.ksyonz@ukr.net

2 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: marina-korniienko@mail.ru

Download PDF (print version)

Citation for print version: Кsyonz, І. М. and Korniyenko, M. V. (2017) ‘Development of PCR-test systems for species differentiation of Chlamidiosis agents in Felidae family and rodents order’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 3(4), pp. 5–9.

Download PDF (online version)

Citation for online version: Кsyonz, І. М. and Korniyenko, M. V. (2017) ‘Development of PCR-test systems for species differentiation of Chlamidiosis agents in Felidae family and rodents order’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 3(4), pp. 5–9. Available at: http://jvmbbs.kharkov.ua/archive/2017/volume3/issue4/oJVMBBS_2017034_005-009.pdf

Summary. According to the current classification adopted at the 2nd European Symposium on Animal Chlamydiosis and Zoonotic Implications (EMAC‑2), pathogens causing chlamydioses in cats and rodents are Chlamydia genus bacteria of the three species: C. felis, C. caviae and C. muridarum. Three PCR test systems were developed for indication and species differentiation of the said bacteria. The basis for the developed diagnostics is the design and synthesis of three oligonucleotide primers pairs, flanking specific fragments of the chlamydial MOMP gene DNA pathogenic to cats and rodents. Analytical specificity of the developed PCR test systems is confirmed by the results of 13 biological materials samples amplification, the total of 13 ones being chlamydia-containing, namely: 4 samples contain C. felis, one — C. caviae, and one — C. muridarum. In addition to Chlamydia, DNA samples were taken from Leptospira and Babesia.

Keywords: cats, guinea pigs, mouse rodents, PCR-test system, species differentiation, Chlamydia felis, Chlamydia caviae, Chlamydia muridarum

References:

Frazer, L. C., Sullivan, J. E., Zurenski, M. A., Mintus, M., Tomasak, T. E., Prantner, D., Nagarajan, U. M. and Darville, T. (2013) ‘CD4+ T cell expression of MyD88 is essential for normal resolution of Chlamydia muridarum genital tract infection’, The Journal of Immunology, 191(8), pp. 4269–4279. http://dx.doi.org/10.4049/jimmunol.1301547

Hartley, J. C., Stevenson, S., Robinson, A. J., Littlewood, J. D., Carder, C., Cartledge, J., Clark, C. and Ridgway, G. L. (2001) ‘Conjunctivitis due to Chlamydophila felis (Chlamydia psittaci feline pneumonitis agent) Acquired from a cat: case report with molecular characterization of isolates from the patient and cat’, Journal of Infection, 43(1), pp. 7–11. http://dx.doi.org/10.1053/jinf.2001.0845

Jayarapu, K., Kerr, M. S., Katschke, A. and Johnson, R. M. (2009) ‘Chlamydia muridarum-specific CD4 T-cell clones recognize infected reproductive tract epithelial cells in an interferon-dependent fashion’, Infection and Immunity, 77(10), pp. 4469–4479. http://dx.doi.org/10.1128/IAI.00491-09

Kalendar, R., Lee, D., and Schulman, A. H. (2014) ‘FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis’, in Valla, S. and Lale, R. (eds.) DNA Cloning and Assembly Methods. Methods in Molecular Biology, 1116. New York: Springer, pp. 271–302. http://dx.doi.org/10.1007/978-1-62703-764-8_18

Korniyenko, M. V. and Кsyonz, І. М. (2017) ‘Definition of DNA fragments polymorphic variants of chlamydial infections pathogens in cat family carnivores and rodents’ [Vyznachennia polimorfnykh variantiv frahmentiv DNK zbudnykiv khlamidiinykh infektsii u miasoidnykh rodyny kotiachykh ta hryzuniv]. Ukrainian Black Sea Region Agrarian Science [Visnyk ahrarnoi nauky Prychornomoria], 83, pp. 124–128. [in Ukrainian]

Ksyonz, І. and Liubetskyi, V. (2014) ‘Changes in the chlamydia classification’ [Zminy u klasyfikatsiyi khlamidiy], Veterinary Medicine of Ukraine [Veterynarna medytsyna Ukrainy], 9, pp. 11–16. Available at: http://nbuv.gov.ua/UJRN/vetm_2014_9_4. [in Ukrainian]

Lutz-Wohlgroth, L., Becker, A., Brugnera, E., Huat, Z. L., Zimmermann, D., Grimm, F., Haessig, M., Greub, G., Kaps, S., Spiess, B., Pospischil, A. and Vaughan, L. (2006) ‘Chlamydiales in guinea-pigs and their zoonotic potential’, Journal of Veterinary Medicine Series A, 53(4), pp. 185–193. http://dx.doi.org/10.1111/j.1439-0442.2006.00819.x

Sachse, K. (2013) ‘Neues aus dem NRL Chlamydiose’, in 2nd European Meeting on Animal Chlamydioses and Zoonotic Implications (EMAC-2), Germany, Jena, 13–14 June 2013, рр. 95–96.

Sachse, K., Bavoil, P. M., Kaltenboeck, B., Stephens, R. S., Kuo, C.-C., Rosselló-Móra, R. and Horn, M. (2015) ‘Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species’, Systematic and Applied Microbiology, 38(2), pp. 99–103. http://dx.doi.org/10.1016/j.syapm.2014.12.004

Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) ‘MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0’, Molecular Biology and Evolution, 24(8), pp. 1596–1599. http://dx.doi.org/10.1093/molbev/msm092