Issue 4
Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
3, Issue 4, December 2017, Pages 5–9
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
DEVELOPMENT OF PCR-TEST
SYSTEMS FOR SPECIES DIFFERENTIATION OF CHLAMIDIOSIS AGENTS IN FELIDAE FAMILY
AND RODENTS ORDER
Кsyonz І. М. 1,
Korniyenko M. V. 2
1 Institute of Pig Breeding and Agroindustrial
Production of the National Academy of Agrarian Sciences of Ukraine, Poltava,
Ukraine, e-mail: igor.ksyonz@ukr.net
2 National Scientific Center ‘Institute of Experimental and Clinical
Veterinary Medicine’, Kharkiv, Ukraine, e-mail: marina-korniienko@mail.ru
Download
PDF (print version)
Citation for print version: Кsyonz, І. М. and
Korniyenko, M. V. (2017) ‘Development of PCR-test systems for species
differentiation of Chlamidiosis agents in Felidae family and rodents order’,
Journal for Veterinary Medicine,
Biotechnology and Biosafety, 3(4), pp. 5–9.
Download
PDF (online version)
Citation for online version: Кsyonz, І. М. and
Korniyenko, M. V. (2017) ‘Development of PCR-test systems for species
differentiation of Chlamidiosis agents in Felidae family and rodents order’,
Journal for Veterinary Medicine,
Biotechnology and Biosafety. [Online] 3(4), pp. 5–9. Available at:
http://jvmbbs.kharkov.ua/archive/2017/volume3/issue4/oJVMBBS_2017034_005-009.pdf
Summary. According to
the current classification adopted at the 2nd European Symposium on
Animal Chlamydiosis and Zoonotic Implications (EMAC‑2), pathogens causing
chlamydioses in cats and rodents are Chlamydia
genus bacteria of the three species: C. felis, C. caviae and C. muridarum.
Three PCR test systems were developed for indication and species
differentiation of the said bacteria. The basis for the developed diagnostics
is the design and synthesis of three oligonucleotide primers pairs, flanking
specific fragments of the chlamydial MOMP gene DNA pathogenic to cats and
rodents. Analytical specificity of the developed PCR test systems is confirmed
by the results of 13 biological materials samples amplification, the total
of 13 ones being chlamydia-containing, namely: 4 samples contain C. felis,
one — C. caviae, and one — C. muridarum.
In addition to Chlamydia, DNA samples
were taken from Leptospira and Babesia.
Keywords: cats, guinea pigs, mouse rodents, PCR-test
system, species differentiation, Chlamydia felis, Chlamydia caviae, Chlamydia muridarum
References:
Frazer, L. C., Sullivan, J. E.,
Zurenski, M. A., Mintus, M., Tomasak, T. E.,
Prantner, D., Nagarajan, U. M. and Darville, T. (2013)
‘CD4+ T cell expression of MyD88 is essential for normal resolution
of Chlamydia muridarum genital tract
infection’, The Journal of
Immunology, 191(8), pp. 4269–4279. http://dx.doi.org/10.4049/jimmunol.1301547
Hartley, J. C., Stevenson, S., Robinson, A. J.,
Littlewood, J. D., Carder, C., Cartledge, J.,
Clark, C. and Ridgway, G. L. (2001) ‘Conjunctivitis due to Chlamydophila felis (Chlamydia
psittaci feline pneumonitis agent) Acquired from a cat: case report with
molecular characterization of isolates from the patient and cat’, Journal of Infection, 43(1),
pp. 7–11. http://dx.doi.org/10.1053/jinf.2001.0845
Jayarapu, K., Kerr, M. S., Katschke, A. and
Johnson, R. M. (2009) ‘Chlamydia
muridarum-specific CD4 T-cell clones recognize infected reproductive tract
epithelial cells in an interferon-dependent fashion’, Infection and Immunity, 77(10),
pp. 4469–4479. http://dx.doi.org/10.1128/IAI.00491-09
Kalendar, R., Lee, D., and Schulman, A. H. (2014)
‘FastPCR software for PCR, in silico PCR, and oligonucleotide assembly
and analysis’, in Valla, S. and Lale, R. (eds.) DNA Cloning
and Assembly Methods. Methods in Molecular Biology, 1116. New York:
Springer, pp. 271–302. http://dx.doi.org/10.1007/978-1-62703-764-8_18
Korniyenko, M. V. and
Кsyonz, І. М. (2017) ‘Definition of DNA fragments polymorphic variants of chlamydial
infections pathogens in cat family carnivores and rodents’ [Vyznachennia polimorfnykh variantiv
frahmentiv DNK zbudnykiv khlamidiinykh infektsii u miasoidnykh rodyny kotiachykh
ta hryzuniv]. Ukrainian Black Sea Region Agrarian Science [Visnyk
ahrarnoi nauky Prychornomoria], 83, pp. 124–128. [in Ukrainian]
Ksyonz, І. and Liubetskyi, V. (2014) ‘Changes in
the chlamydia classification’ [Zminy u klasyfikatsiyi khlamidiy], Veterinary
Medicine of Ukraine [Veterynarna medytsyna Ukrainy], 9,
pp. 11–16. Available at: http://nbuv.gov.ua/UJRN/vetm_2014_9_4.
[in Ukrainian]
Lutz-Wohlgroth, L., Becker, A., Brugnera, E.,
Huat, Z. L., Zimmermann, D., Grimm, F., Haessig, M.,
Greub, G., Kaps, S., Spiess, B., Pospischil, A. and
Vaughan, L. (2006) ‘Chlamydiales in guinea-pigs and their zoonotic
potential’, Journal of Veterinary
Medicine Series A, 53(4), pp. 185–193. http://dx.doi.org/10.1111/j.1439-0442.2006.00819.x
Sachse, K. (2013) ‘Neues aus dem NRL Chlamydiose’, in 2nd European Meeting on Animal Chlamydioses and Zoonotic Implications
(EMAC-2), Germany,
Jena, 13–14 June 2013, рр. 95–96.
Sachse, K., Bavoil, P. M., Kaltenboeck, B.,
Stephens, R. S., Kuo, C.-C.,
Rosselló-Móra, R. and Horn, M. (2015) ‘Emendation
of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species’, Systematic and Applied Microbiology,
38(2), pp. 99–103. http://dx.doi.org/10.1016/j.syapm.2014.12.004
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007)
‘MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version
4.0’, Molecular Biology and Evolution, 24(8),
pp. 1596–1599. http://dx.doi.org/10.1093/molbev/msm092