Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 5, Issue 2, June 2019, Pages 15–21

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

VALIDATION OF ANTHRAX SPECIFIC pagA QUANTITATIVE PCR FOR DETECTION OF BACILLUS ANTHRACIS pXO1 PLASMID

Biloivan O. V. 1, Stegniy B. T. 1, Gerilovych A. P. 1, Solodiankin O. S. 1, Popp C. 2, Schwarz J. 2

1 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: silverscreen91@gmail.com

2 Bundeswehr Institute of Microbiology, Munich, Germany

Download PDF (print version)

Citation for print version: Biloivan, O. V., Stegniy, B. T., Gerilovych, A. P., Solodiankin, O. S., Popp, C. and Schwarz, J. (2019) ‘Validation of Anthrax specific pagA quantitative PCR for detection of Bacillus anthracis pXO1 plasmid’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 5(2), pp. 15–21.

Download PDF (online version)

Citation for online version: Biloivan, O. V., Stegniy, B. T., Gerilovych, A. P., Solodiankin, O. S., Popp, C. and Schwarz, J. (2019) ‘Validation of Anthrax specific pagA quantitative PCR for detection of Bacillus anthracis pXO1 plasmid’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 5(2), pp. 15–21. DOI: 10.36016/JVMBBS-2019-5-2-3.

Summary. This paper represents qPCR validation results for the detection of Bacillus anthracis pagA pXO1 plasmid marker. The aim of the work was to transfer, implement and validate anthrax specific pagA qPCR assay for the detection of pagA, the genetic marker of the pXO1 plasmid of Bacillus anthracis. qPCR was conducted using the Applied Biosystems Fast 7500 Real-time PCR system including Applied Biosystem specific reagents (AmpliTaq Gold). Anthrax pXO1 pagA primers (pagA_forward, pagA_reverse) and TaqMan pagA probe. Data analysis and statistical calculations were performed using Microsoft Excel. The limit of detection (probit analysis) was calculated using the Statgraphics software. Robustness of qPCR was adjusted by optimization of amplification parameters (annealing temperature) and concentration of reaction components (MgCl2, primers, probe and Taq polymerase). In order to test the repeatability and precision of the qPCR assay after optimization, the variation within the experiment (Intra-assay variability) and between several independent experiments (Inter-assay variability) was evaluated. Probit analysis with serial dilutions of positive control with five replicates per dilution was carried out to define the 95% limit of detection (LOD). To determine if the CT value correlates with the amount of template DNA, the linearity of qPCR was analyzed. The standard curve was generated and the linear regression line and the coefficient of correlation (R2) were calculated. To define the ability to detect sequence of interest (sensitivity), we tested mixed panel of Bacillus anthracis DNAs. As the result, pagA marker could be detected in all tested strains . To find out the specificity of our assay, we also tested DNA of various strains of B. cereus, B. thuringiensis, B. mycoides, and B. globigii (potential cross-reacting organisms) as well as DNA samples of various pathogenic bacteria and viruses which cause similar clinical symptoms as anthrax (differential diagnosis relevant organisms).

Keywords: anthrax, plasmid, validation, quantitative PCR

References:

Antonov, B. I. (2002) ‘Using of PCR method for the diagnostics of acute animal infectious diseases’ [Ispol’zovanie metoda PTsR pri diagnostike ostrykh infektsionnykh bolezney zhivotnykh], Veterinary Consultant [Veterinarnyy konsul’tant], 16–17, p. 22. [in Russian]

Biloivan, O. V., Stegniy, B. T., Solodiankin, O. S. and Gerilovych, A. P. (2018) ‘Development of positive control assays for the detection of Bacillus anthracis plasmids PXO1 and PXO2 via PCR’ [Rozrobka pozytyvnykh PLR-kontroliv dlia vyiavlennia plazmid Bacillus anthracis pXO1 ta pXO2], Veterinary Biotechnology [Veterynarna biotekhnolohiia], 32(1), pp. 44–49. doi: https://doi.org/10.31073/vet_biotech32(1)-3. [in Ukrainian]

Chandra, P. K. and Wikel, S. K. (2005) ‘Analyzing ligation mixtures using a PCR based method’, Biological Procedures Online, 7(1), pp. 93–100. doi: https://doi.org/10.1251/bpo108

Hoffmaster, A. R., Fitzgerald, C. C., Ribot, E., Mayer, L. W. and Popovic, T. (2002) ‘Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated Anthrax outbreak, United States’, Emerging Infectious Diseases, 8(10), pp. 1111–1116. doi: https://doi.org/10.3201/eid0810.020394

ISO (International Organization for Standardization). (2017) ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories. Geneva: ISO. Available at: https://www.iso.org/standard/66912.html

Keim, P., Van Ert, M. N., Pearson, T., Vogler, A. J., Huynh, L. Y. and Wagner, D. M. (2004) ‘Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales’, Infection, Genetics and Evolution, 4(3), pp. 205–213. doi: https://doi.org/10.1016/j.meegid.2004.02.005

Martin, J. W., Christopher, G. W. and Eitzen, E. M. (2007) ‘Chapter 1. History of biological weapons: from poisoned darts to intentional epidemics’, in Dembek Z. F. (ed.) Medical Aspects of Chemical and Biological Warfare. Falls Church, Virginia; Washington, D. C.: Office of the Surgeon General; Borden Institute, pp. 1–20. Available at: http://purl.access.gpo.gov/GPO/LPS101470

Mock, M. and Fouet, A. (2001) ‘Anthrax’, Annual Review of Microbiology, 55(1), pp. 647–671. doi: https://doi.org/10.1146/annurev.micro.55.1.647

Moens, B., Lopez, G., Adaui, V., Gonzalez, E., Kerremans, L., Clark, D., Verdonck, K., Gotuzzo, E., Vanham, G., Cassar, O., Gessain, A., Vandamme, A.-M. and Van Dooren, S. (2009) ‘Development and validation of a multiplex real-time PCR assay for simultaneous genotyping and human T-lymphotropic virus type 1, 2, and 3 proviral load determination’, Journal of Clinical Microbiology, 47(11), pp. 3682–3691. doi: https://doi.org/10.1128/JCM.00781-09

OIE (World Organisation for Animal Health). (2013) ‘Chapter 1.1.6. Principles and methods of validation of diagnostic assays for infectious diseases, in: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees). Paris: OIE. Available at: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.06_VALIDATION.pdf

Purcell, B. K., Worsham, P. L. and Freidlander, A. M. (2007) ‘Chapter 4. Anthrax’, in Dembek Z. F. (ed.) Medical Aspects of Chemical and Biological Warfare. Falls Church, Virginia; Washington, D. C.: Office of the Surgeon General; Borden Institute, pp. 69–90. Available at: http://purl.access.gpo.gov/GPO/LPS101470

Rodríguez-Lázaro, D. and Hernández, M. (2013) ‘Introduction to the real-time PCR’, in Rodríguez-Lázaro, D. (ed.) Real-Time PCR in Food Science: Current Technology and Applications. Norfolk, UK: Caister Academic Press, pp. 3–19. ISBN 9781908230157

WHO (World Health Organization), FAO (Food and Agriculture Organization of the United Nations) and OIE (World Organisation for Animal Health). (2008) Anthrax in Humans and Animals. 4th ed. Geneva: WHO. Available at: https://apps.who.int/iris/handle/10665/97503