Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 5, Issue 3, September 2019, Pages 5–9

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

INFRARED MILK PASTERIZER AS A COMPONENT OF SUCCESS IN THE ANIMAL LEUKEMIA CONTROL

Zavgorodniy A. I., Paliy A. P., Stegniy B. T., Gorbatenko S. K.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: paliy.dok@gmail.com

Download PDF (print version)

Citation for print version: Zavgorodniy, A. I., Paliy, A. P., Stegniy, B. T. and Gorbatenko, S. K. (2019) ‘Infrared milk pasterizer as a component of success in the Animal leukemia control’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 5(3), pp. 5–9.

Download PDF (online version)

Citation for online version: Zavgorodniy, A. I., Paliy, A. P., Stegniy, B. T. and Gorbatenko, S. K. (2019) ‘Infrared milk pasterizer as a component of success in the Animal leukemia control’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 5(3), pp. 5–9. DOI: 10.36016/JVMBBS-2019-5-3-1.

Summary. One of the most common and dangerous cattle diseases of oncogenic origin is leukemia. An effective technological step to control animal leukemia and to prevent the possibility of its further spread is milk pasteurization. We have studied the quality of dairy raw materials and equipment used in the pasteurization of milk. The resistance of pasteurized milk was compared after using various methods of its processing (storage in a refrigerator at a temperature of 4–5°C). The comparative characteristics and specific energy consumption of the most popular pasteurizer models with ‘UOM’ milk pasteurizer-disinfectant were described. We studied the specific energy consumption of the ‘UOM’ units. It was established that pasteurization of milk in cattle leukemia is an integral stage in the overall complex of veterinary and sanitary measures. For pasteurization in livestock farms and milk processing plants, it is necessary to install modern, energy-saving, highly efficient pasteurizers using infrared heating. When using infrared equipment for pasteurization-disinfection of milk (‘UOM’), the disinfection of milk occurs at 79.5°C in a stream (without exposure). This mode of milk processing completely destroys the leukemia virus in it and does not affect its nutritional qualities

Keywords: leukemia, milk, pasteurization, temperature, energy consumption, infrared radiation, pasteurizer

References:

Bartlett, P. C., Sordillo, L. M., Byrem, T. M., Norby, B., Grooms, D. L., Swenson, C. L., Zalucha, J. and Erskine, R. J. (2014) ‘Options for the control of Bovine leukemia virus in dairy cattle’, Journal of the American Veterinary Medical Association, 244(8), pp. 914–922. doi: https://doi.org/10.2460/javma.244.8.914

Baumgartener, L., Olson, C. and Onuma, M. (1976) ‘Effect of pasteurization and heat treatment on Bovine leukemia virus’, Journal of the American Veterinary Medical Association, 169(11), pp. 1189–1191. PMID: https://www.ncbi.nlm.nih.gov/pubmed/187564

Chaffer, M., Leitner, G., Winkler, M., Glickman, A., Krifucks, O., Ezra, E. and Saran, A. (1999) ‘Coagulase-negative staphylococci and mammary gland infections in cows’, Journal of Veterinary Medicine, Series B, 46(10), pp. 707–712. doi: https://doi.org/10.1046/j.1439-0450.1999.00289.x

Dong, F., Hennessy, D. A. and Jensen, H. H. (2012) ‘Factors determining milk quality and implications for production structure under somatic cell count standard modification’, Journal of Dairy Science, 95(11), pp. 6421–6435. doi: https://doi.org/10.3168/jds.2012-5522

Elizondo-Salazar, J. A., Jones, C. M. and Heinrichs, A. J. (2010) ‘Evaluation of calf milk pasteurization systems on 6 Pennsylvania dairy farms’, Journal of Dairy Science, 93(11), pp. 5509–5513. doi: https://doi.org/10.3168/jds.2010-3460

Fernandes, A. M., Balasegaram, S., Willis, C., Wimalarathna, H. M. L., Maiden, M. C. and McCarthy, N. D. (2015) ‘Partial failure of milk pasteurization as a risk for the transmission of Campylobacter from cattle to humans’, Clinical Infectious Diseases, 61(6), pp. 903–909. doi: https://doi.org/10.1093/cid/civ431

Ferrer, J., Kenyon, S. and Gupta, P. (1981) ‘Milk of dairy cows frequently contains a leukemogenic virus’, Science, 213(4511), pp. 1014–1016. doi: https://doi.org/10.1126/science.6267692

Frie, M. C., Sporer, K. R. B., Benitez, O. J., Wallace, J. C., Droscha, C. J., Bartlett, P. C. and Coussens, P. M. (2017) ‘Dairy cows naturally infected with Bovine leukemia virus exhibit abnormal B- and T-cell phenotypes after primary and secondary exposures to keyhole limpet hemocyanin’, Frontiers in Veterinary Science, 4, p. 112. doi: https://doi.org/10.3389/fvets.2017.00112

Gayà, A. and Calvo, J. (2018) ‘Improving pasteurization to preserve the biological components of donated human milk’, Frontiers in Pediatrics, 6, p. 288. doi: https://doi.org/10.3389/fped.2018.00288

Hadzevych, O. V., Paliy, A. P., Kinash, O. V., Petrov, R. V. and Paliy, A. P. (2019) ‘Antibiotic resistance of microorganisms isolated from milk’, World of Medicine and Biology, 15(69), pp. 245–250. doi: https://doi.org/10.26724/2079-8334-2019-3-69-245-250

LaDronka, R. M., Ainsworth, S., Wilkins, M. J., Norby, B., Byrem, T. M. and Bartlett, P. C. (2018) ‘Prevalence of Bovine leukemia virus antibodies in US dairy cattle’, Veterinary Medicine International, 2018, p. 5831278. doi: https://doi.org/10.1155/2018/5831278

Leitner, G., Merin, U., Jacoby, S., Bezman, D., Lemberskiy-Kuzin, L. and Katz, G. (2013) ‘Real-time evaluation of milk quality as reflected by clotting parameters of individual cow’s milk during the milking session, between day-to-day and during lactation’, Animal, 7(9), pp. 1551–1558. doi: https://doi.org/10.1017/S1751731113000542

More, S. J. (2009) ‘Global trends in milk quality: implications for the Irish dairy industry’, Irish Veterinary Journal, 62(S4), pp. 5–14. doi: https://doi.org/10.1186/2046-0481-62-S4-S5

Murphy, S. C., Martin, N. H., Barbano, D. M. and Wiedmann, M. (2016) ‘Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield?’, Journal of Dairy Science, 99(12), pp. 10128–10149. doi: https://doi.org/10.3168/jds.2016-11172

Nightingale, C., Dhuyvetter, K., Mitchell, R. and Schukken, Y. (2008) ‘Influence of variable milk quality premiums on observed milk quality’, Journal of Dairy Science, 91(3), pp. 1236–1244. doi: https://doi.org/10.3168/jds.2007-0609

Paliy, A. P. and Paliy, A. P. (2019) Technic and Technological Innovations in Dairy Cattle [Tekhniko-tekhnolohichni innovatsii u molochnomu skotarstvi]. Kharkiv: Miskdruk. ISBN 9786176192077. [in Ukrainian]

Picinin, L. C. A., Bordignon-Luiz, M. T., Cerqueira, M. M. O. P., Toaldo, I. M., Souza, F. N., Leite, M. O., Fonseca, L. M. and Lana, A. M. Q. (2019) ‘Effect of seasonal conditions and milk management practices on bulk milk quality in Minas Gerais State — Brazil’, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 71(4), pp. 1355–1363. doi: https://doi.org/10.1590/1678-4162-10063

Polat, M., Takeshima, S. and Aida, Y. (2017) ‘Epidemiology and genetic diversity of Bovine leukemia virus’, Virology Journal, 14(1), p. 209. doi: https://doi.org/10.1186/s12985-017-0876-4

Ruggiero, V. J. and Bartlett, P. C. (2019) ‘Control of Bovine leukemia virus in three US dairy herds by culling ELISA-positive cows’, Veterinary Medicine International, 2019, p. 3202184. doi: https://doi.org/10.1155/2019/3202184

Schwingel, D., Andreolla, A. P., Erpen, L. M. S., Frandoloso, R. and Kreutz, L. C. (2019) ‘Bovine leukemia virus DNA associated with breast cancer in women from South Brazil’, Scientific Reports, 9(1), p. 2949. doi: https://doi.org/10.1038/s41598-019-39834-7

Stabel, J. R. (2003) ‘Effective methods for postharvest intervention in dairy processing’, Journal of Dairy Science, 86, pp. E10–E15. doi: https://doi.org/10.3168/jds.S0022-0302(03)74035-1