Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
7, Issue 1–2, June 2021, Pages 21–26
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
INFLUENCE OF SIDEROPHORES AND
IRON ON MYCOBACTERIUM BOVIS ISOLATION
FROM PATHOLOGICAL MATERIAL
Zavgorodniy A. I.,
Pozmogova S. A., Bilushko V. V., Kalashnyk M. V.,
Gologurska O. I.
National Scientific
Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: nick.v.kalashnik@gmail.com
Download
PDF (print version)
Citation for print version: Zavgorodniy, A. I., Pozmogova, S. A.,
Bilushko, V. V., Kalashnyk, M. V. and Gologurska, O. I.
(2021) ‘Influence of siderophores and iron on Mycobacterium bovis isolation from pathological material’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 7(1–2), pp. 21–26.
Download
PDF (online version)
Citation for online version: Zavgorodniy, A. I., Pozmogova, S. A.,
Bilushko, V. V., Kalashnyk, M. V. and Gologurska, O. I.
(2021) ‘Influence of siderophores and iron on Mycobacterium bovis isolation from pathological material’, Journal for Veterinary Medicine, Biotechnology and
Biosafety. [Online] 7(1–2), pp. 21–26. DOI: 10.36016/JVMBBS-2021-7-1-2-4.
Summary. The
article presents the results of studying the effect of siderophores and iron on
the isolation of Mycobacterium bovis from pathological material. It has
been established that the simultaneous presence of iron and siderophore from M. phlei
in the nutrient medium makes it possible to detect the growth of M. bovis
from pathological material 6–8 days earlier; ensures the growth of
more colonies and bacterial mass. The presence of heterologous to mycobacteria
siderophore (from Nocardia spp.) in the medium reduces the elective
(growth) properties of the medium. Siderophores found in the culture filtrate
or alcoholic extract of M. phlei can be valuable additives to
culture media for the accelerated isolation of M. bovis from
pathological material
Keywords: Mycobacterium phlei, Nocardia
asteroides, nutrient media,
elective properties
References:
Agoro, R. and Mura, C. (2019)
‘Iron supplementation therapy, a friend and foe of mycobacterial
infections?’, Pharmaceuticals, 12(2), p. 75. doi: https://doi.org/10.3390/ph12020075.
Andrews, S. C.,
Robinson, A. K. and Rodríguez-Quiñones, F. (2003)
‘Bacterial iron homeostasis’, FEMS Microbiology Reviews,
27(2–3), pp. 215–237. doi: https://doi.org/10.1016/S0168-6445(03)00055-X.
Arnold, F. M.,
Weber, M. S., Gonda, I., Gallenito, M. J.,
Adenau, S., Egloff, P., Zimmermann, I.,
Hutter, C. A. J., Hürlimann, L. M.,
Peters, E. E., Piel, J., Meloni, G., Medalia, O. and
Seeger, M. A. (2020) ‘The ABC exporter IrtAB imports and
reduces mycobacterial siderophores’, Nature, 580(7803),
pp. 413–417. doi: https://doi.org/10.1038/s41586-020-2136-9.
Dhakal, D., Rayamajhi, V., Mishra, R.
and Sohng, J. K. (2019) ‘Bioactive molecules from Nocardia :
diversity, bioactivities and biosynthesis’, Journal of Industrial
Microbiology and Biotechnology, 46(3–4), pp. 385–407. doi:
https://doi.org/10.1007/s10295-018-02120-y.
DiGiuseppe Champion, P. A. and
Cox, J. S. (2007) ‘Protein secretion systems in
mycobacteria’, Cellular Microbiology, 9(6),
pp. 1376–1384. doi: 10.1111/j.1462-5822.2007.00943.x.
Dobin, V. L.,
Demikhov, V. G. and Zharikova, M. P. (2016) ‘Iron
exchange in mycobacteria’ [Obmen zheleza u mikobakteriy], Tuberculosis
and Lung Diseases [Tuberkulez i bolezni legkikh], 94(7),
pp. 6–10. doi: https://doi.org/10.21292/2075-1230-2016-94-7-6-10. [in Russian].
Dobryszycka, W. (1997) ‘Biological
functions of haptoglobin — new pieces to an old puzzle’, European
Journal of Clinical Chemistry and Clinical Biochemistry, 35(9), p. 647–654. PMID: https://pubmed.ncbi.nlm.nih.gov/9352226.
Drakesmith, H. and
Prentice, A. M. (2012) ‘Hepcidin and the iron-infection
axis’, Science, 338(6108), pp. 768–772. doi: https://doi.org/10.1126/science.1224577.
Fang, Z., Sampson, S. L.,
Warren, R. M., Gey van Pittius, N. C. and
Newton-Foot, M. (2015) ‘Iron acquisition strategies in
mycobacteria’, Tuberculosis, 95(2), pp. 123–130. doi: https://doi.org/10.1016/j.tube.2015.01.004.
Gokarn, K. and Pal, R. B.
(2017) ‘Preliminary evaluation of anti-tuberculosis potential of
siderophores against drug-resistant Mycobacterium
tuberculosis by mycobacteria growth indicator tube-drug sensitivity
test’, BMC Complementary and Alternative Medicine, 17(1),
p. 161. doi: https://doi.org/10.1186/s12906-017-1665-8.
Gupta, V., Gupta, R. K.,
Khare, G., Salunke, D. M. and Tyagi, A. K. (2009)
‘Crystal Structure of Bfr A from Mycobacterium
tuberculosis: Incorporation of selenomethionine results in cleavage and
demetallation of haem’, PLoS ONE, 4(11), p. e8028. doi: https://doi.org/10.1371/journal.pone.0008028.
He, J. and Xie, J. (2011)
‘Advances in Mycobacterium
siderophore-based drug discovery’, Acta Pharmaceutica Sinica B,
1(1), pp. 8–13. doi: https://doi.org/10.1016/j.apsb.2011.04.008.
Hood, M. I. and
Skaar, E. P. (2012) ‘Nutritional immunity: transition metals at
the pathogen–host interface’, Nature Reviews Microbiology,
10(8), pp. 525–537. doi: https://doi.org/10.1038/nrmicro2836.
Hoshino, Y., Chiba, K.,
Ishino, K., Fukai, T., Igarashi, Y., Yazawa, K.,
Mikami, Y. and Ishikawa, J. (2011) ‘Identification of
nocobactin NA biosynthetic gene clusters in Nocardia
farcinica’, Journal of Bacteriology, 193(2),
pp. 441–448. doi: https://doi.org/10.1128/JB.00897-10.
Jones, C. M. and Niederweis, M.
(2011) ‘Mycobacterium tuberculosis can utilize heme as an iron source’,
Journal of Bacteriology, 193(7), pp. 1767–1770. doi: https://doi.org/10.1128/JB.01312-10.
Knobloch, P., Koliwer‐Brandl, H., Arnold, F. M.,
Hanna, N., Gonda, I., Adenau, S., Personnic, N., Barisch, C.,
Seeger, M. A., Soldati, T. and Hilbi, H. (2020) ‘Mycobacterium
marinum produces distinct mycobactin and carboxymycobactin siderophores to
promote growth in broth and phagocytes’, Cellular Microbiology,
22(5), p. e13163. doi: https://doi.org/10.1111/cmi.13163.
Lyamin, A. V.,
Khaliulin, A. V., Ismatullin, D. D.,
Kozlov, A. V. and Baldina, O. A. (2016) ‘Iron as
essential growth factor mycobacteria’ [Zhelezo kak essentsial’nyy
faktor rosta mikobakteriy], Bulletin of
the Samara Scientific Center of the Russian Academy of Sciences [Izvestiya
Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk], 18(5.2),
p. 320–327. Available at: https://elibrary.ru/item.asp?id=28990361. [in Russian].
Männle, D.,
McKinnie, S. M. K., Mantri, S. S., Steinke, K.,
Lu, Z., Moore, B. S., Ziemert, N. and Kaysser, L.
(2020) ‘Comparative genomics and metabolomics in the genus Nocardia’,
mSystems, 5(3), p. e00125-20. doi: https://doi.org/10.1128/mSystems.00125-20.
Rajiv, J., Dam, T., Kumar, S.,
Bose, M., Aggarwal, K. K. and Babu, C. R. (2001)
‘Inhibition of the in-vitro growth of Mycobacterium
tuberculosis by a phytosiderophore’, Journal of Medical
Microbiology, 50(10), pp. 916–918. doi: https://doi.org/10.1099/0022-1317-50-10-916.
Reddy, P. V., Puri, R. V.,
Chauhan, P., Kar, R., Rohilla, A., Khera, A. and Tyagi, A. K.
(2013) ‘Disruption of mycobactin biosynthesis leads to attenuation of Mycobacterium tuberculosis for growth
and virulence’, The Journal of Infectious Diseases, 208(8),
pp. 1255–1265. doi: https://doi.org/10.1093/infdis/jit250.
Rodriguez, G. M. (2006)
‘Control of iron metabolism in Mycobacterium
tuberculosis’, Trends in Microbiology, 14(7),
pp. 320–327. doi: https://doi.org/10.1016/j.tim.2006.05.006.
Rodriguez, G. M. and Smith, I.
(2006) ‘Identification of an ABC transporter required for iron
acquisition and virulence in Mycobacterium tuberculosis’, Journal
of Bacteriology, 188(2), pp. 424–430. doi: https://doi.org/10.1128/JB.188.2.424-430.2006.
Rodriguez, G. M.,
Voskuil, M. I., Gold, B., Schoolnik, G. K. and
Smith, I. (2002) ‘ideR, an essential gene in Mycobacterium
tuberculosis: Role of ideR in
iron-dependent gene expression, iron metabolism, and oxidative stress
response’, Infection and Immunity, 70(7),
pp. 3371–3381. doi: https://doi.org/10.1128/IAI.70.7.3371-3381.2002.
Takatsuka, M., Osada-Oka, M.,
Satoh, E. F., Kitadokoro, K., Nishiuchi, Y., Niki, M.,
Inoue, M., Iwai, K., Arakawa, T., Shimoji, Y.,
Ogura, H., Kobayashi, K., Rambukkana, A. and Matsumoto, S.
(2011) ‘A histone-like protein of mycobacteria possesses ferritin
superfamily protein-like activity and protects against DNA damage by fenton
reaction’, PLoS ONE, 6(6), p. e20985. doi: https://doi.org/10.1371/journal.pone.0020985.
Tanner, R.,
O’Shea, M. K., White, A. D., Müller, J.,
Harrington-Kandt, R., Matsumiya, M., Dennis, M. J.,
Parizotto, E. A., Harris, S., Stylianou, E.,
Naranbhai, V., Bettencourt, P., Drakesmith, H., Sharpe, S.,
Fletcher, H. A. and McShane, H. (2017) ‘The influence of
haemoglobin and iron on in vitro
mycobacterial growth inhibition assays’, Scientific Reports, 7(1),
p. 43478. doi: https://doi.org/10.1038/srep43478.
Tolosano, E. and Altruda, F. (2002)
‘Hemopexin: Structure, function, and regulation’, DNA and Cell
Biology, 21(4), pp. 297–306. doi: https://doi.org/10.1089/104454902753759717.
Tullius, M. V.,
Harmston, C. A., Owens, C. P., Chim, N.,
Morse, R. P., McMath, L. M., Iniguez, A.,
Kimmey, J. M., Sawaya, M. R., Whitelegge, J. P.,
Horwitz, M. A. and Goulding, C. W. (2011) ‘Discovery
and characterization of a unique mycobacterial heme acquisition system’, Proceedings
of the National Academy of Sciences, 108(12), pp. 5051–5056.
doi: https://doi.org/10.1073/pnas.1009516108.