Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 7, Issue 1–2, June 2021, Pages 21–26

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

INFLUENCE OF SIDEROPHORES AND IRON ON MYCOBACTERIUM BOVIS ISOLATION FROM PATHOLOGICAL MATERIAL

Zavgorodniy A. I., Pozmogova S. A., Bilushko V. V., Kalashnyk M. V., Gologurska O. I.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: nick.v.kalashnik@gmail.com

Download PDF (print version)

Citation for print version: Zavgorodniy, A. I., Pozmogova, S. A., Bilushko, V. V., Kalashnyk, M. V. and Gologurska, O. I. (2021) ‘Influence of siderophores and iron on Mycobacterium bovis isolation from pathological material’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 7(1–2), pp. 21–26.

Download PDF (online version)

Citation for online version: Zavgorodniy, A. I., Pozmogova, S. A., Bilushko, V. V., Kalashnyk, M. V. and Gologurska, O. I. (2021) ‘Influence of siderophores and iron on Mycobacterium bovis isolation from pathological material’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 7(1–2), pp. 21–26. DOI: 10.36016/JVMBBS-2021-7-1-2-4.

Summary. The article presents the results of studying the effect of siderophores and iron on the isolation of Mycobacterium bovis from pathological material. It has been established that the simultaneous presence of iron and siderophore from M. phlei in the nutrient medium makes it possible to detect the growth of M. bovis from pathological material 6–8 days earlier; ensures the growth of more colonies and bacterial mass. The presence of heterologous to mycobacteria siderophore (from Nocardia spp.) in the medium reduces the elective (growth) properties of the medium. Siderophores found in the culture filtrate or alcoholic extract of M. phlei can be valuable additives to culture media for the accelerated isolation of M. bovis from pathological material

Keywords: Mycobacterium phlei, Nocardia asteroides, nutrient media, elective properties

References:

Agoro, R. and Mura, C. (2019) ‘Iron supplementation therapy, a friend and foe of mycobacterial infections?’, Pharmaceuticals, 12(2), p. 75. doi: https://doi.org/10.3390/ph12020075.

Andrews, S. C., Robinson, A. K. and Rodríguez-Quiñones, F. (2003) ‘Bacterial iron homeostasis’, FEMS Microbiology Reviews, 27(2–3), pp. 215–237. doi: https://doi.org/10.1016/S0168-6445(03)00055-X.

Arnold, F. M., Weber, M. S., Gonda, I., Gallenito, M. J., Adenau, S., Egloff, P., Zimmermann, I., Hutter, C. A. J., Hürlimann, L. M., Peters, E. E., Piel, J., Meloni, G., Medalia, O. and Seeger, M. A. (2020) ‘The ABC exporter IrtAB imports and reduces mycobacterial siderophores’, Nature, 580(7803), pp. 413–417. doi: https://doi.org/10.1038/s41586-020-2136-9.

Dhakal, D., Rayamajhi, V., Mishra, R. and Sohng, J. K. (2019) ‘Bioactive molecules from Nocardia : diversity, bioactivities and biosynthesis’, Journal of Industrial Microbiology and Biotechnology, 46(3–4), pp. 385–407. doi: https://doi.org/10.1007/s10295-018-02120-y.

DiGiuseppe Champion, P. A. and Cox, J. S. (2007) ‘Protein secretion systems in mycobacteria’, Cellular Microbiology, 9(6), pp. 1376–1384. doi: 10.1111/j.1462-5822.2007.00943.x.

Dobin, V. L., Demikhov, V. G. and Zharikova, M. P. (2016) ‘Iron exchange in mycobacteria’ [Obmen zheleza u mikobakteriy], Tuberculosis and Lung Diseases [Tuberkulez i bolezni legkikh], 94(7), pp. 6–10. doi: https://doi.org/10.21292/2075-1230-2016-94-7-6-10. [in Russian].

Dobryszycka, W. (1997) ‘Biological functions of haptoglobin — new pieces to an old puzzle’, European Journal of Clinical Chemistry and Clinical Biochemistry, 35(9), p. 647–654. PMID: https://pubmed.ncbi.nlm.nih.gov/9352226.

Drakesmith, H. and Prentice, A. M. (2012) ‘Hepcidin and the iron-infection axis’, Science, 338(6108), pp. 768–772. doi: https://doi.org/10.1126/science.1224577.

Fang, Z., Sampson, S. L., Warren, R. M., Gey van Pittius, N. C. and Newton-Foot, M. (2015) ‘Iron acquisition strategies in mycobacteria’, Tuberculosis, 95(2), pp. 123–130. doi: https://doi.org/10.1016/j.tube.2015.01.004.

Gokarn, K. and Pal, R. B. (2017) ‘Preliminary evaluation of anti-tuberculosis potential of siderophores against drug-resistant Mycobacterium tuberculosis by mycobacteria growth indicator tube-drug sensitivity test’, BMC Complementary and Alternative Medicine, 17(1), p. 161. doi: https://doi.org/10.1186/s12906-017-1665-8.

Gupta, V., Gupta, R. K., Khare, G., Salunke, D. M. and Tyagi, A. K. (2009) ‘Crystal Structure of Bfr A from Mycobacterium tuberculosis: Incorporation of selenomethionine results in cleavage and demetallation of haem’, PLoS ONE, 4(11), p. e8028. doi: https://doi.org/10.1371/journal.pone.0008028.

He, J. and Xie, J. (2011) ‘Advances in Mycobacterium siderophore-based drug discovery’, Acta Pharmaceutica Sinica B, 1(1), pp. 8–13. doi: https://doi.org/10.1016/j.apsb.2011.04.008.

Hood, M. I. and Skaar, E. P. (2012) ‘Nutritional immunity: transition metals at the pathogen–host interface’, Nature Reviews Microbiology, 10(8), pp. 525–537. doi: https://doi.org/10.1038/nrmicro2836.

Hoshino, Y., Chiba, K., Ishino, K., Fukai, T., Igarashi, Y., Yazawa, K., Mikami, Y. and Ishikawa, J. (2011) ‘Identification of nocobactin NA biosynthetic gene clusters in Nocardia farcinica’, Journal of Bacteriology, 193(2), pp. 441–448. doi: https://doi.org/10.1128/JB.00897-10.

Jones, C. M. and Niederweis, M. (2011) ‘Mycobacterium tuberculosis can utilize heme as an iron source’, Journal of Bacteriology, 193(7), pp. 1767–1770. doi: https://doi.org/10.1128/JB.01312-10.

Knobloch, P., KoliwerBrandl, H., Arnold, F. M., Hanna, N., Gonda, I., Adenau, S., Personnic, N., Barisch, C., Seeger, M. A., Soldati, T. and Hilbi, H. (2020) ‘Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes’, Cellular Microbiology, 22(5), p. e13163. doi: https://doi.org/10.1111/cmi.13163.

Lyamin, A. V., Khaliulin, A. V., Ismatullin, D. D., Kozlov, A. V. and Baldina, O. A. (2016) ‘Iron as essential growth factor mycobacteria’ [Zhelezo kak essentsial’nyy faktor rosta mikobakteriy], Bulletin of the Samara Scientific Center of the Russian Academy of Sciences [Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk], 18(5.2), p. 320–327. Available at: https://elibrary.ru/item.asp?id=28990361. [in Russian].

Männle, D., McKinnie, S. M. K., Mantri, S. S., Steinke, K., Lu, Z., Moore, B. S., Ziemert, N. and Kaysser, L. (2020) ‘Comparative genomics and metabolomics in the genus Nocardia’, mSystems, 5(3), p. e00125-20. doi: https://doi.org/10.1128/mSystems.00125-20.

Rajiv, J., Dam, T., Kumar, S., Bose, M., Aggarwal, K. K. and Babu, C. R. (2001) ‘Inhibition of the in-vitro growth of Mycobacterium tuberculosis by a phytosiderophore’, Journal of Medical Microbiology, 50(10), pp. 916–918. doi: https://doi.org/10.1099/0022-1317-50-10-916.

Reddy, P. V., Puri, R. V., Chauhan, P., Kar, R., Rohilla, A., Khera, A. and Tyagi, A. K. (2013) ‘Disruption of mycobactin biosynthesis leads to attenuation of Mycobacterium tuberculosis for growth and virulence’, The Journal of Infectious Diseases, 208(8), pp. 1255–1265. doi: https://doi.org/10.1093/infdis/jit250.

Rodriguez, G. M. (2006) ‘Control of iron metabolism in Mycobacterium tuberculosis’, Trends in Microbiology, 14(7), pp. 320–327. doi: https://doi.org/10.1016/j.tim.2006.05.006.

Rodriguez, G. M. and Smith, I. (2006) ‘Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis’, Journal of Bacteriology, 188(2), pp. 424–430. doi: https://doi.org/10.1128/JB.188.2.424-430.2006.

Rodriguez, G. M., Voskuil, M. I., Gold, B., Schoolnik, G. K. and Smith, I. (2002) ‘ideR, an essential gene in Mycobacterium tuberculosis: Role of ideR in iron-dependent gene expression, iron metabolism, and oxidative stress response’, Infection and Immunity, 70(7), pp. 3371–3381. doi: https://doi.org/10.1128/IAI.70.7.3371-3381.2002.

Takatsuka, M., Osada-Oka, M., Satoh, E. F., Kitadokoro, K., Nishiuchi, Y., Niki, M., Inoue, M., Iwai, K., Arakawa, T., Shimoji, Y., Ogura, H., Kobayashi, K., Rambukkana, A. and Matsumoto, S. (2011) ‘A histone-like protein of mycobacteria possesses ferritin superfamily protein-like activity and protects against DNA damage by fenton reaction’, PLoS ONE, 6(6), p. e20985. doi: https://doi.org/10.1371/journal.pone.0020985.

Tanner, R., O’Shea, M. K., White, A. D., Müller, J., Harrington-Kandt, R., Matsumiya, M., Dennis, M. J., Parizotto, E. A., Harris, S., Stylianou, E., Naranbhai, V., Bettencourt, P., Drakesmith, H., Sharpe, S., Fletcher, H. A. and McShane, H. (2017) ‘The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays’, Scientific Reports, 7(1), p. 43478. doi: https://doi.org/10.1038/srep43478.

Tolosano, E. and Altruda, F. (2002) ‘Hemopexin: Structure, function, and regulation’, DNA and Cell Biology, 21(4), pp. 297–306. doi: https://doi.org/10.1089/104454902753759717.

Tullius, M. V., Harmston, C. A., Owens, C. P., Chim, N., Morse, R. P., McMath, L. M., Iniguez, A., Kimmey, J. M., Sawaya, M. R., Whitelegge, J. P., Horwitz, M. A. and Goulding, C. W. (2011) ‘Discovery and characterization of a unique mycobacterial heme acquisition system’, Proceedings of the National Academy of Sciences, 108(12), pp. 5051–5056. doi: https://doi.org/10.1073/pnas.1009516108.