Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 7, Issue 3, September 2021, Pages 19–23

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

DEVELOPMENT OF RECOMBINANT POSITIVE CONTROL FOR DETECTION OF PORCINE CIRCOVIRUS TYPE 3 BY POLYMERASE CHAIN REACTION

Rudova N. G., Lymanska О. Yu., Bolotin V. I., Stegniy B. T., Solodiankin О. S., Gerilovych А. P.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: rudovanatawa@ukr.net

Download PDF (print version)

Citation for print version: Rudova, N. G., Lymanska, О. Yu., Bolotin, V. I., Stegniy, B. T., Solodiankin, О. S. and Gerilovych, А. P. (2021) ‘Development of recombinant positive control for detection of porcine circovirus type 3 by polymerase chain reaction’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 7(3), pp. 19–23.

Download PDF (online version)

Citation for online version: Rudova, N. G., Lymanska, О. Yu., Bolotin, V. I., Stegniy, B. T., Solodiankin, О. S. and Gerilovych, А. P. (2021) ‘Development of recombinant positive control for detection of porcine circovirus type 3 by polymerase chain reaction’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 7(3), pp. 19–23. DOI: 10.36016/JVMBBS-2021-7-3-3.

Summary. This work aimed to obtain positive control using recombinant DNA technology for detection by PCR of a new poorly studied pathogen — porcine circovirus type 3. Recombinant positive control was designed using Clone Manager Basic. As a vector in the creation of recombinant control we used plasmid pTZ57R/T, as an insert — a fragment of the gene rep PCV-3 with the length of 418 nucleotide pairs, obtained by classical PCR. Transformation of competent cells of E. coli strain DH5a was carried out by chemical poration, followed by plating on LB-medium with the addition of ampicillin at a final concentration of 100 μg/ml. The selection of E. coli cell colonies was performed by the marker of antibiotic resistance to ampicillin. The presence of a specific insert was checked by PCR with electrophoretic visualization of the results. The developed recombinant positive control can be used for the monitoring of biological samples from pigs for the presence of genetic material PCV-3 using molecular technologies

Keywords: PCV-3, PCR, plasmid pTZ57R/T, gene rep, E. coli strain DH5a

References:

Bera, B. C., Choudhary, M., Anand, T., Virmani, N., Sundaram, K., Choudhary, B. and Tripathi, B. N. (2020) ‘Detection and genetic characterization of porcine circovirus 3 (PCV3) in pigs in India’, Transboundary and Emerging Diseases, 67(3), pp. 1062–1067. doi: https://doi.org/10.1111/tbed.13463.

Caasi, D. R. J., Arif, M., Payton, M., Melcher, U., Winder, L. and Ochoa-Corona, F. M. (2013) ‘A multi-target, non-infectious and clonable artificial positive control for routine PCR-based assays’, Journal of Microbiological Methods, 95(2), pp. 229–234. doi: https://doi.org/10.1016/j.mimet.2013.08.017.

Camacho, D., Reyes, J., Franco, L., Comach, G. and Ferrer, E. (2016) ‘Cloning alphavirus and flavivirus sequences for use as positive controls in molecular diagnostics’ [Clonación de secuencias de alfavirus y flavivirus para uso como controles positivos en el diagnóstico molecular], Revista Peruana de Medicina Experimental y Salud Pública, 33(2), pp. 269–273. doi: https://doi.org/10.17843/rpmesp.2016.332.2101. [in Spanish].

Chan, M., Jiang, B. and Tan, T.-Y. (2016) ‘Using pooled recombinant plasmids as control materials for diagnostic real-time PCR’, Clinical Laboratory, 62(10), p. 1893–1901. doi: https://doi.org/10.7754/Clin.Lab.2016.160114.

Chen, J.-M., Guo, L.-X., Sun, C.-Y., Sun, Y.-X., Chen, J.-W., Li, L. and Wang, Z.-L. (2006) ‘A stable and differentiable RNA positive control for reverse transcription-polymerase chain reaction’, Biotechnology Letters, 28(22), pp. 1787–1792. doi: https://doi.org/10.1007/s10529-006-9161-0.

Das, A., Ward, G., Lowe, A., Xu, L., Moran, K., Renshaw, R., Dubovi, E., Reising, M. and Jia, W. (2017) ‘Development and validation of a highly sensitive real-time PCR assay for rapid detection of parapoxviruses’, Journal of Veterinary Diagnostic Investigation, 29(4), pp. 499–507. doi: https://doi.org/10.1177/1040638716680676.

Franzo, G., Tucciarone, C. M., Drigo, M., Cecchinato, M., Martini, M., Mondin, A. and Menandro, M. L. (2018) ‘First report of wild boar susceptibility to porcine circovirus type 3: High prevalence in the Colli Euganei Regional Park (Italy) in the absence of clinical signs’, Transboundary and Emerging Diseases, 65(4), pp. 957–962. doi: https://doi.org/10.1111/tbed.12905.

Gokduman, K., Dilek Avsaroglu, M., Cakiris, A., Ustek, D. and Candan Gurakan, G. (2016) ‘Recombinant plasmid-based quantitative real-time PCR analysis of Salmonella enterica serotypes and its application to milk samples’, Journal of Microbiological Methods, 122, pp. 50–58. doi: https://doi.org/10.1016/j.mimet.2016.01.008.

Hayashi, S., Ohshima, Y., Furuya, Y., Nagao, A., Oroku, K., Tsutsumi, N., Sasakawa, C. and Sato, T. (2018) ‘First detection of porcine circovirus type 3 in Japan’, Journal of Veterinary Medical Science, 80(9), pp. 1468–1472. doi: https://doi.org/10.1292/jvms.18-0079.

Ji, J., Xu, X., Wang, X., Zuo, K., Li, Z., Leng, C., Kan, Y., Yao, L. and Bi, Y. (2019) ‘Novel polymerase spiral reaction assay for the visible molecular detection of porcine circovirus type 3’, BMC Veterinary Research, 15(1), p. 322. doi: https://doi.org/10.1186/s12917-019-2072-9.

Jiang, H., Wang, D., Wang, J., Zhu, S., She, R., Ren, X., Tian, J., Quan, R., Hou, L., Li, Z., Chu, J., Guo, Y., Xi, Y., Song, H., Yuan, F., Wei, L. and Liu, J. (2019) ‘Induction of Porcine dermatitis and nephropathy syndrome in piglets by infection with porcine circovirus type 3’, Journal of Virology, 93(4), p. e02045-18. doi: https://doi.org/10.1128/JVI.02045-18.

Kim, H., Lim, D., Chae, H., Park, J., Kim, S., Lee, K., Lee, C., Lyoo, Y. S. and Park, C. (2020) ‘Advanced targetspecific probebased realtime loopmediated isothermal amplification assay for the rapid and specific detection of porcine circovirus 3’, Transboundary and Emerging Diseases, 67(6), pp. 2336–2344. doi: https://doi.org/10.1111/tbed.13671.

Lion, T. (2001) ‘Current recommendations for positive controls in RT-PCR assays’, Leukemia, 15(7), pp. 1033–1037. doi: https://doi.org/10.1038/sj.leu.2402133.

Liu, Y., Meng, H., Shi, L. and Li, L. (2019) ‘Sensitive detection of porcine circovirus 3 by droplet digital PCR’, Journal of Veterinary Diagnostic Investigation, 31(4), pp. 604–607. doi: https://doi.org/10.1177/1040638719847686.

Matange, K., Tuck, J. M. and Keung, A. J. (2021) ‘DNA stability: A central design consideration for DNA data storage systems’, Nature Communications, 12(1), p. 1358. doi: https://doi.org/10.1038/s41467-021-21587-5.

Miyazaki, A., Watanabe, S., Ogata, K., Nagatomi, Y., Kokutani, R., Minegishi, Y., Tamehiro, N., Sakai, S., Adachi, R. and Hirao, T. (2019) ‘Real-time PCR detection methods for food allergens (wheat, buckwheat, and peanuts) using reference plasmids’, Journal of Agricultural and Food Chemistry, 67(19), pp. 5680–5686. doi: https://doi.org/10.1021/acs.jafc.9b01234.

Ouyang, T., Niu, G., Liu, X., Zhang, X., Zhang, Y. and Ren, L. (2019) ‘Recent progress on porcine circovirus type 3’, Infection, Genetics and Evolution, 73, pp. 227–233. doi: https://doi.org/10.1016/j.meegid.2019.05.009.

Palinski, R., Piñeyro, P., Shang, P., Yuan, F., Guo, R., Fang, Y., Byers, E. and Hause, B. M. (2017) ‘A novel porcine circovirus distantly related to known circoviruses is associated with Porcine dermatitis and nephropathy syndrome and reproductive failure’, Journal of Virology, 91(1), p. e01873-16. doi: https://doi.org/10.1128/JVI.01879-16.

Phan, T. G., Giannitti, F., Rossow, S., Marthaler, D., Knutson, T. P., Li, L., Deng, X., Resende, T., Vannucci, F. and Delwart, E. (2016) ‘Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation’, Virology Journal, 13(1), p. 184. doi: https://doi.org/10.1186/s12985-016-0642-z.

Saporiti, V., Cruz, T. F., CorreaFiz, F., Núñez, J. I., Sibila, M. and Segalés, J. (2020a) ‘Similar frequency of porcine circovirus 3 (PCV3) detection in serum samples of pigs affected by digestive or respiratory disorders and agematched clinically healthy pigs’, Transboundary and Emerging Diseases, 67(1), pp. 199–205. doi: https://doi.org/10.1111/tbed.13341.

Saporiti, V., Huerta, E., CorreaFiz, F., Grosse Liesner, B., Duran, O., Segalés, J. and Sibila, M. (2020b) ‘Detection and genotyping of porcine circovirus 2 (PCV2) and detection of porcine circovirus 3 (PCV3) in sera from fattening pigs of different European countries’, Transboundary and Emerging Diseases, 67(6), pp. 2521–2531. doi: https://doi.org/10.1111/tbed.13596.

Saporiti, V., Martorell, S., Cruz, T. F., Klaumann, F., Correa-Fiz, F., Balasch, M., Sibila, M. and Segalés, J. (2020c) ‘Frequency of detection and phylogenetic analysis of porcine circovirus 3 (PCV-3) in healthy primiparous and multiparous sows and their mummified fetuses and stillborn’, Pathogens, 9(7), p. 533. doi: https://doi.org/10.3390/pathogens9070533.

Saraiva, G., Vidigal, P., Assao, V., Fajardo, M., Loreto, A., Fietto, J., Bressan, G., Lobato, Z., Almeida, M. and Silva-Júnior, A. (2019) ‘Retrospective detection and genetic characterization of porcine circovirus 3 (PCV3) strains identified between 2006 and 2007 in Brazil’, Viruses, 11(3), p. 201. doi: https://doi.org/10.3390/v11030201.

Serena, M. S., Cappuccio, J. A., Barrales, H., Metz, G. E., Aspitia, C. G., Lozada, I., Perfumo, C. J., Quiroga, M. A., Piñeyro, P. and Echeverría, M. G. (2021) ‘First detection and genetic characterization of porcine circovirus type 3 (PCV3) in Argentina and its association with reproductive failure’, Transboundary and Emerging Diseases, 68(4), pp. 1761–1766. doi: https://doi.org/10.1111/tbed.13893.

Souza, T. C. G. D. de, Gava, D., Schaefer, R., Leme, R. A., Silva Porto, G. da and Alfieri, A. A. (2021) ‘Porcine circovirus 3a field strains in free-living wild boars in Paraná State, Brazil’, Animals, 11(6), p. 1634. doi: https://doi.org/10.3390/ani11061634.

Taverniers, I., Van Bockstaele, E. and De Loose, M. (2004) ‘Cloned plasmid DNA fragments as calibrators for controlling GMOs: Different real-time duplex quantitative PCR methods’, Analytical and Bioanalytical Chemistry, 378(5), pp. 1198–1207. doi: https://doi.org/10.1007/s00216-003-2372-5.

Wang, Y., Feng, Y., Zheng, W., Noll, L., Porter, E., Potter, M., Cino, G., Peddireddi, L., Liu, X., Anderson, G. and Bai, J. (2019) ‘A multiplex real-time PCR assay for the detection and differentiation of the newly emerged porcine circovirus type 3 and continuously evolving type 2 strains in the United States’, Journal of Virological Methods, 269, pp. 7–12. doi: https://doi.org/10.1016/j.jviromet.2019.03.011.

Yao, M., Zhang, X., Gao, Y., Song, S., Xu, D. and Yan, L. (2019) ‘Development and application of multiplex PCR method for simultaneous detection of seven viruses in ducks’, BMC Veterinary Research, 15(1), p. 103. doi: https://doi.org/10.1186/s12917-019-1820-1.

Yuan, L., Liu, Y., Chen, Y., Gu, X., Dong, H., Zhang, S., Han, T., Zhou, Z., Song, X. and Wang, C. (2020) ‘Optimized real-time fluorescence PCR assay for the detection of porcine circovirus type 3 (PCV3)’, BMC Veterinary Research, 16(1), p. 249. doi: https://doi.org/10.1186/s12917-020-02435-y.

Yuzhakov, A. G., Raev, S. A., Alekseev, K. P., Grebennikova, T. V., Verkhovsky, O. A., Zaberezhny, A. D. and Aliper, T. I. (2018) ‘First detection and full genome sequence of porcine circovirus type 3 in Russia’, Virus Genes, 54(4), pp. 608–611. doi: https://doi.org/10.1007/s11262-018-1582-z.

Zheng, L., Chai, L., Tian, R., Zhao, Y., Chen, H.-Y. and Wang, Z. (2020) ‘Simultaneous detection of porcine reproductive and respiratory syndrome virus and porcine circovirus 3 by SYBR Green І-based duplex real-time PCR’, Molecular and Cellular Probes, 49, p. 101474. doi: https://doi.org/10.1016/j.mcp.2019.101474.