Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
7, Issue 3, September 2021, Pages 19–23
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
DEVELOPMENT OF RECOMBINANT
POSITIVE CONTROL FOR DETECTION OF PORCINE CIRCOVIRUS
TYPE 3 BY POLYMERASE CHAIN REACTION
Rudova N. G., Lymanska О. Yu., Bolotin V. I., Stegniy B. T., Solodiankin О. S.,
Gerilovych А. P.
National Scientific
Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: rudovanatawa@ukr.net
Download
PDF (print version)
Citation for print version: Rudova, N. G.,
Lymanska, О. Yu., Bolotin, V. I.,
Stegniy, B. T., Solodiankin, О. S.
and Gerilovych, А. P. (2021) ‘Development
of recombinant positive control for detection of porcine circovirus
type 3 by polymerase chain reaction’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 7(3),
pp. 19–23.
Download
PDF (online version)
Citation for online version: Rudova, N. G.,
Lymanska, О. Yu., Bolotin, V. I.,
Stegniy, B. T., Solodiankin, О. S.
and Gerilovych, А. P. (2021) ‘Development
of recombinant positive control for detection of porcine circovirus
type 3 by polymerase chain reaction’, Journal for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 7(3), pp. 19–23. DOI: 10.36016/JVMBBS-2021-7-3-3.
Summary. This work
aimed to obtain positive control using recombinant DNA technology for detection
by PCR of a new poorly studied pathogen —
porcine circovirus type 3.
Recombinant positive control was designed using Clone
Manager Basic. As a vector in the creation of recombinant control we
used plasmid pTZ57R/T, as an insert —
a fragment of the gene rep PCV-3 with the length of 418 nucleotide pairs,
obtained by classical PCR. Transformation of
competent cells of E. coli
strain DH5a was carried out
by chemical poration, followed by plating on LB-medium with the addition of ampicillin at a final
concentration of 100 μg/ml. The selection of E. coli
cell colonies was performed by the marker of antibiotic resistance to
ampicillin. The presence of a specific insert was
checked by PCR with electrophoretic
visualization of the results. The developed recombinant positive control can be used for the monitoring of biological samples from
pigs for the presence of genetic material PCV-3 using
molecular technologies
Keywords: PCV-3, PCR, plasmid pTZ57R/T, gene rep,
E. coli strain DH5a
References:
Bera, B. C.,
Choudhary, M., Anand, T.,
Virmani, N., Sundaram, K.,
Choudhary, B. and Tripathi, B. N.
(2020) ‘Detection and genetic characterization of porcine circovirus 3 (PCV3) in pigs
in India’, Transboundary and Emerging
Diseases, 67(3), pp. 1062–1067. doi:
https://doi.org/10.1111/tbed.13463.
Caasi, D. R. J., Arif, M.,
Payton, M., Melcher, U., Winder, L. and
Ochoa-Corona, F. M. (2013) ‘A multi-target, non-infectious and clonable artificial positive control for routine PCR-based assays’, Journal of Microbiological
Methods, 95(2), pp. 229–234. doi: https://doi.org/10.1016/j.mimet.2013.08.017.
Camacho, D., Reyes, J.,
Franco, L., Comach, G. and Ferrer, E. (2016) ‘Cloning alphavirus
and flavivirus sequences for use as positive controls
in molecular diagnostics’ [Clonación de secuencias de alfavirus y flavivirus para uso como
controles positivos en el diagnóstico molecular], Revista
Peruana de Medicina
Experimental y Salud Pública,
33(2), pp. 269–273. doi:
https://doi.org/10.17843/rpmesp.2016.332.2101.
[in Spanish].
Chan, M.,
Jiang, B. and Tan, T.-Y. (2016) ‘Using pooled recombinant plasmids as
control materials for diagnostic real-time PCR’,
Clinical Laboratory, 62(10), p. 1893–1901. doi: https://doi.org/10.7754/Clin.Lab.2016.160114.
Chen, J.-M., Guo, L.-X.,
Sun, C.-Y., Sun, Y.-X., Chen, J.-W., Li, L. and
Wang, Z.-L. (2006) ‘A stable and differentiable
RNA positive control for reverse transcription-polymerase chain
reaction’, Biotechnology Letters, 28(22),
pp. 1787–1792. doi:
https://doi.org/10.1007/s10529-006-9161-0.
Das, A., Ward, G., Lowe, A., Xu, L., Moran, K., Renshaw, R.,
Dubovi, E., Reising, M.
and Jia, W. (2017) ‘Development and
validation of a highly sensitive real-time PCR assay
for rapid detection of parapoxviruses’, Journal
of Veterinary Diagnostic Investigation, 29(4), pp. 499–507. doi: https://doi.org/10.1177/1040638716680676.
Franzo, G., Tucciarone, C. M.,
Drigo, M., Cecchinato, M.,
Martini, M., Mondin, A. and Menandro, M. L. (2018) ‘First report of
wild boar susceptibility to porcine circovirus
type 3: High prevalence in the Colli Euganei Regional Park (Italy) in the absence of clinical
signs’, Transboundary and Emerging
Diseases, 65(4), pp. 957–962. doi: https://doi.org/10.1111/tbed.12905.
Gokduman, K., Dilek Avsaroglu, M., Cakiris, A.,
Ustek, D. and Candan Gurakan, G. (2016) ‘Recombinant plasmid-based
quantitative real-time PCR analysis of Salmonella enterica serotypes and its
application to milk samples’, Journal of Microbiological Methods,
122, pp. 50–58. doi:
https://doi.org/10.1016/j.mimet.2016.01.008.
Hayashi, S.,
Ohshima, Y., Furuya, Y., Nagao, A., Oroku, K., Tsutsumi, N.,
Sasakawa, C. and Sato, T. (2018)
‘First detection of porcine circovirus
type 3 in Japan’, Journal of Veterinary Medical Science,
80(9), pp. 1468–1472. doi:
https://doi.org/10.1292/jvms.18-0079.
Ji, J., Xu, X.,
Wang, X., Zuo, K., Li, Z., Leng, C., Kan, Y.,
Yao, L. and Bi, Y. (2019) ‘Novel polymerase spiral reaction
assay for the visible molecular detection of porcine circovirus
type 3’, BMC Veterinary Research, 15(1), p. 322. doi: https://doi.org/10.1186/s12917-019-2072-9.
Jiang, H., Wang, D., Wang, J.,
Zhu, S., She, R., Ren, X., Tian, J., Quan, R., Hou, L., Li, Z., Chu, J., Guo, Y., Xi, Y., Song, H., Yuan, F.,
Wei, L. and Liu, J. (2019) ‘Induction of Porcine dermatitis and
nephropathy syndrome in piglets by infection with porcine circovirus
type 3’, Journal of Virology, 93(4), p. e02045-18. doi:
https://doi.org/10.1128/JVI.02045-18.
Kim, H., Lim, D., Chae, H., Park, J., Kim, S., Lee, K.,
Lee, C., Lyoo, Y. S. and Park, C.
(2020) ‘Advanced target‐specific probe‐based real‐time loop‐mediated isothermal amplification assay for the rapid and specific
detection of porcine circovirus 3’, Transboundary and Emerging Diseases, 67(6),
pp. 2336–2344. doi:
https://doi.org/10.1111/tbed.13671.
Lion, T.
(2001) ‘Current recommendations for positive controls in RT-PCR assays’, Leukemia, 15(7),
pp. 1033–1037. doi: https://doi.org/10.1038/sj.leu.2402133.
Liu, Y., Meng, H., Shi, L. and Li, L. (2019)
‘Sensitive detection of porcine circovirus 3
by droplet digital PCR’, Journal of
Veterinary Diagnostic Investigation, 31(4), pp. 604–607. doi:
https://doi.org/10.1177/1040638719847686.
Matange, K., Tuck, J. M. and
Keung, A. J. (2021) ‘DNA stability: A central design
consideration for DNA data storage systems’, Nature Communications,
12(1), p. 1358. doi: https://doi.org/10.1038/s41467-021-21587-5.
Miyazaki, A., Watanabe, S.,
Ogata, K., Nagatomi, Y., Kokutani, R., Minegishi, Y., Tamehiro, N.,
Sakai, S., Adachi, R. and Hirao, T.
(2019) ‘Real-time PCR detection methods for
food allergens (wheat, buckwheat, and peanuts) using reference plasmids’,
Journal of Agricultural and Food Chemistry, 67(19),
pp. 5680–5686. doi:
https://doi.org/10.1021/acs.jafc.9b01234.
Ouyang, T., Niu, G., Liu, X., Zhang, X., Zhang, Y.
and Ren, L. (2019) ‘Recent progress on
porcine circovirus type 3’, Infection,
Genetics and Evolution, 73, pp. 227–233. doi:
https://doi.org/10.1016/j.meegid.2019.05.009.
Palinski, R., Piñeyro, P.,
Shang, P., Yuan, F., Guo, R.,
Fang, Y., Byers, E. and Hause, B. M.
(2017) ‘A novel porcine circovirus distantly
related to known circoviruses is associated with
Porcine dermatitis and nephropathy syndrome and reproductive failure’, Journal
of Virology, 91(1), p. e01873-16. doi: https://doi.org/10.1128/JVI.01879-16.
Phan, T. G.,
Giannitti, F., Rossow, S.,
Marthaler, D., Knutson, T. P.,
Li, L., Deng, X., Resende, T., Vannucci, F. and Delwart, E.
(2016) ‘Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic
inflammation’, Virology Journal, 13(1), p. 184. doi:
https://doi.org/10.1186/s12985-016-0642-z.
Saporiti, V., Cruz, T. F., Correa‐Fiz, F., Núñez, J. I.,
Sibila, M. and Segalés, J.
(2020a) ‘Similar frequency of porcine circovirus 3
(PCV‐3) detection in serum samples of pigs affected by digestive or
respiratory disorders and age‐matched clinically healthy pigs’, Transboundary
and Emerging Diseases, 67(1), pp. 199–205. doi: https://doi.org/10.1111/tbed.13341.
Saporiti, V., Huerta, E., Correa‐Fiz, F., Grosse Liesner, B.,
Duran, O., Segalés, J. and Sibila, M. (2020b)
‘Detection and genotyping of porcine
circovirus 2 (PCV‐2) and detection of porcine circovirus 3 (PCV‐3) in sera from fattening pigs of different European countries’, Transboundary and Emerging Diseases, 67(6),
pp. 2521–2531. doi:
https://doi.org/10.1111/tbed.13596.
Saporiti, V., Martorell, S., Cruz, T. F., Klaumann, F., Correa-Fiz, F.,
Balasch, M., Sibila, M.
and Segalés, J. (2020c)
‘Frequency of detection and phylogenetic analysis of porcine circovirus 3 (PCV-3) in healthy primiparous and multiparous sows and their mummified
fetuses and stillborn’, Pathogens, 9(7), p. 533. doi:
https://doi.org/10.3390/pathogens9070533.
Saraiva, G., Vidigal, P., Assao, V.,
Fajardo, M., Loreto, A., Fietto, J., Bressan, G.,
Lobato, Z., Almeida, M. and Silva-Júnior, A. (2019) ‘Retrospective
detection and genetic characterization of porcine circovirus
3 (PCV3) strains identified between 2006 and 2007 in
Brazil’, Viruses, 11(3), p. 201. doi:
https://doi.org/10.3390/v11030201.
Serena, M. S., Cappuccio, J. A.,
Barrales, H., Metz, G. E., Aspitia, C. G., Lozada, I.,
Perfumo, C. J., Quiroga, M. A.,
Piñeyro, P. and Echeverría, M. G.
(2021) ‘First detection and genetic characterization of porcine circovirus type 3 (PCV3) in
Argentina and its association with reproductive failure’, Transboundary and Emerging Diseases, 68(4),
pp. 1761–1766. doi:
https://doi.org/10.1111/tbed.13893.
Souza, T. C. G. D. de,
Gava, D., Schaefer, R., Leme, R. A.,
Silva Porto, G. da and Alfieri, A. A. (2021)
‘Porcine circovirus 3a
field strains in free-living wild boars in Paraná State, Brazil’, Animals,
11(6), p. 1634. doi: https://doi.org/10.3390/ani11061634.
Taverniers, I., Van Bockstaele, E.
and De Loose, M. (2004) ‘Cloned
plasmid DNA fragments as calibrators for controlling GMOs:
Different real-time duplex quantitative PCR methods’,
Analytical and Bioanalytical Chemistry,
378(5), pp. 1198–1207. doi:
https://doi.org/10.1007/s00216-003-2372-5.
Wang, Y., Feng, Y.,
Zheng, W., Noll, L., Porter, E.,
Potter, M., Cino, G., Peddireddi, L.,
Liu, X., Anderson, G. and Bai, J.
(2019) ‘A multiplex real-time PCR assay for the
detection and differentiation of the newly emerged porcine circovirus
type 3 and continuously evolving type 2 strains in the United
States’, Journal of Virological Methods,
269, pp. 7–12. doi:
https://doi.org/10.1016/j.jviromet.2019.03.011.
Yao, M., Zhang, X., Gao, Y., Song, S., Xu, D. and Yan, L. (2019) ‘Development and
application of multiplex PCR method for simultaneous
detection of seven viruses in ducks’, BMC Veterinary Research,
15(1), p. 103. doi: https://doi.org/10.1186/s12917-019-1820-1.
Yuan, L., Liu, Y., Chen, Y., Gu, X., Dong, H.,
Zhang, S., Han, T., Zhou, Z., Song, X. and Wang, C.
(2020) ‘Optimized real-time fluorescence PCR
assay for the detection of porcine circovirus
type 3 (PCV3)’, BMC Veterinary Research,
16(1), p. 249. doi: https://doi.org/10.1186/s12917-020-02435-y.
Yuzhakov, A. G., Raev, S. A.,
Alekseev, K. P., Grebennikova, T. V.,
Verkhovsky, O. A., Zaberezhny, A. D.
and Aliper, T. I. (2018) ‘First
detection and full genome sequence of porcine circovirus
type 3 in Russia’, Virus Genes, 54(4),
pp. 608–611. doi:
https://doi.org/10.1007/s11262-018-1582-z.
Zheng, L.,
Chai, L., Tian, R., Zhao, Y.,
Chen, H.-Y. and Wang, Z. (2020) ‘Simultaneous detection of
porcine reproductive and respiratory syndrome virus and porcine circovirus 3 by SYBR Green
І-based duplex real-time PCR’, Molecular
and Cellular Probes, 49, p. 101474. doi: https://doi.org/10.1016/j.mcp.2019.101474.