Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
7, Issue 3, September 2021, Pages 24–31
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
DEVELOPMENT OF RECOMBINANT
ANTIGEN EXPRESSION AND PURIFICATION FOR AFRICAN SWINE FEVER SEROLOGICAL
DIAGNOSTICS
Kit M. Yu.
National Scientific
Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: maryna_kit@ukr.net
Download
PDF (print version)
Citation for
print version: Kit, M. Yu. (2021) ‘Development of recombinant
antigen expression and purification for African swine fever serological diagnostics’,
Journal for Veterinary Medicine,
Biotechnology and Biosafety, 7(3), pp. 24–31.
Download
PDF (online version)
Citation for
online version: Kit, M. Yu. (2021) ‘Development of
recombinant antigen expression and purification for African swine fever
serological diagnostics’, Journal for Veterinary
Medicine, Biotechnology and Biosafety. [Online] 7(3),
pp. 24–31. DOI: 10.36016/JVMBBS-2021-7-3-4.
Summary. The paper
reports the purification and its optimization of recombinant proteins p10, p32,
p54, p54ΔTM, DNA ligase and DNA ligaseΔDBD of African swine fever
virus. The corresponding coding sequences were subcloned into
pASG-IBA105 and pASG-IBA103 vectors, multiplied and used for transformation of
competent E. coli expression strain. Expressed proteins were purified using Strep-Tactin XT purification system
under native and denaturing conditions, as well as using detergents according
to the optimized protocol for recombinant proteins solubilization from
inclusion bodies. Among all expressed and purified proteins
p32 and p54 were found to be immunoreactive and specific. Although p54 was
unstable during long-term storage, after further storage condition optimization,
the protein can be used for indirect ASF ELISA
development. Recombinant p32 was shown to be an
effective antigen for ASF ELISA providing detection of antibodies against ASFV
with low background signal
Keywords: ELISA, p10, p32, p54, DNA ligase
References:
Al Dahouk, S.,
Nöckler, K., Tomaso, H., Splettstoesser, W. D., Jungersen, G.,
Riber, U., Petry, T., Hoffmann, D., Scholz, H. C.,
Hensel, A. and Neubauer, H. (2005) ‘Seroprevalence of
Brucellosis, Tularemia, and Yersiniosis in wild boars (Sus scrofa) from North-Eastern Germany’, Journal of
Veterinary Medicine. Series B, 52(10), pp. 444–455. doi: https://doi.org/10.1111/j.1439-0450.2005.00898.x.
Alonso, C., Borca, M.,
Dixon, L., Revilla, Y., Rodriguez, F.,
Escribano, J. M. and ICTV Report Consortium (2018) ‘ICTV virus
taxonomy profile: Asfarviridae’, Journal of General Virology,
99(5), pp. 613–614. doi: https://doi.org/10.1099/jgv.0.001049.
Basile, G.
and Peticca, M. (2009) ‘Recombinant protein expression in Leishmania tarentolae’, Molecular
Biotechnology, 43(3), pp. 273–278. doi: https://doi.org/10.1007/s12033-009-9213-5.
Beltrán-Alcrudo, D.,
Arias, M., Gallardo, C., Kramer, S. and Penrith, M. L.
(2017) African Swine Fever: Detection and
Diagnosis — A Manual for Veterinarians. FAO
Animal Production and Health Manual, 19. Rome: FAO.
Available at: http://www.fao.org/3/i7228en/I7228EN.pdf.
Burgess, R. R. (1996) ‘[12]
Purification of overproduced Escherichia
coli RNA polymerase σ factors by solubilizing inclusion bodies and
refolding from Sarkosyl’, in Adhya, S. (ed.) RNA Polymerase and Associated Factors.
Part A (Methods in Enzymology,
273). San Diego: Academic Press, pp. 145–149. doi:
https://doi.org/10.1016/S0076-6879(96)73014-8.
Coligan, J. E.
(1998) ‘Appendix 1B. Commonly Used Detergents’, Current Protocols
in Protein Science, 11(1), pp. A.1B.1-A.1B.3. doi: https://doi.org/10.1002/0471140864.psa01bs11.
Dixon, L. K., Alonso, C.,
Escribano, J. M., Martins, C., Revilla, Y., Salas, M. L.
and Takamatsu, H. (2012) ‘Asfarviridae’, in
King, A. M. Q., Adams, M. J.,
Carstens, E. B. and Lefkowitz, E. J. (eds.) Virus
Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the
International Committee on Taxonomy of Viruses. San Diego: Academic Press,
pp. 153–162. doi: https://doi.org/10.1016/B978-0-12-384684-6.00012-4.
Dixon, L. K.,
Stahl, K., Jori, F., Vial, L. and Pfeiffer, D. U.
(2020) ‘African swine fever epidemiology and control’, Annual
Review of Animal Biosciences, 8(1), pp. 221–246. doi: https://doi.org/10.1146/annurev-animal-021419-083741.
Heimerman, M. E.,
Murgia, M. V., Wu, P., Lowe, A. D., Jia, W. and
Rowland, R. R. (2018) ‘Linear epitopes in African swine fever
virus p72 recognized by monoclonal antibodies prepared against
baculovirus-expressed antigen’, Journal of Veterinary Diagnostic
Investigation, 30(3), pp. 406–412. doi:
https://doi.org/10.1177/1040638717753966.
Ikonomou, L.,
Schneider, Y.-J. and
Agathos, S. N. (2003) ‘Insect cell culture for industrial
production of recombinant proteins’, Applied Microbiology and
Biotechnology, 62(1), pp. 1–20. doi: https://doi.org/10.1007/s00253-003-1223-9.
Johnson, M. (2013) ‘Detergents:
Triton X-100, Tween-20, and more’, Materials and Methods, 3, doi:
https://doi.org/10.13070/mm.en.3.163.
Kollnberger, S. D.,
Gutierrez-Castañeda, B., Foster-Cuevas, M., Corteyn, A.
and Parkhouse, R. M. E. (2002) ‘Identification of the
principal serological immunodeterminants of African swine fever virus by
screening a virus cDNA library with antibody’, Journal of General
Virology, 83(6), pp. 1331–1342. doi: https://doi.org/10.1099/0022-1317-83-6-1331.
Lau, B. Y. C. and
Othman, A. (2019) ‘Evaluation of sodium deoxycholate as
solubilization buffer for oil palm proteomics analysis’, PloS ONE,
14(8), p. e0221052. doi: https://doi.org/10.1371/journal.pone.0221052.
Ma, Y.,
Lee, C.-J. and Park, J.-S. (2020)
‘Strategies for optimizing the production of proteins and peptides with
multiple disulfide bonds’, Antibiotics, 9(9), p. 541. doi: https://doi.org/10.3390/antibiotics9090541.
Mazur-Panasiuk, N.,
Żmudzki, J. and Woźniakowski, G. (2019) ‘African
swine fever virus — persistence in different environmental
conditions and the possibility of its indirect transmission’, Journal
of Veterinary Research, 63(3), pp. 303–310. doi: https://doi.org/10.2478/jvetres-2019-0058.
OIE (World
Organisation for Animal Health) (2021a) ‘Chapter 3.9.1. African Swine Fever (Infection with African
Swine Fever Virus)’, in Manual of Diagnostic Tests and Vaccines for
Terrestrial Animals (Mammals, Birds and Bees). 8th ed.
[version adopted in May 2021]. Paris: OIE, pp. 1–18. Available at: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.09.01_ASF.pdf.
OIE (World Organisation for Animal Health)
(2021b) Global Situation of African Swine Fever. Report No 47: 2016–2020. Paris: OIE. Available at: https://www.oie.int/app/uploads/2021/03/report-47-global-situation-asf.pdf.
Oura, Ch.
(2017) ‘Chapter 8 — Asfarviridae and Iridoviridae’,
in MacLachlan, N. J. and Dubovi, E. J. (eds.) Fenner’s
Veterinary Virology. 5th ed. San Diego: Academic Press,
pp. 175–188. doi: https://doi.org/10.1016/B978-0-12-800946-8.00008-8.
Pierce Biotechnology (2009) Tech Tip # 43. Protein
Stability and Storage.
Rockford, Il, USA: Thermo Fisher Scientific Inc.. Available at: https://tools.thermofisher.com/content/sfs/brochures/TR0043-Protein-storage.pdf.
Simpson, R. J.
(2010) ‘Stabilization of proteins for storage’, Cold Spring
Harbor Protocols, 2010(5), p. pdb.top79. doi: https://doi.org/10.1101/pdb.top79.
Singh, A., Upadhyay, V.,
Upadhyay, A. K., Singh, S. M. and Panda, A. K.
(2015) ‘Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process’, Microbial
Cell Factories, 14(1), p. 41. doi: https://doi.org/10.1186/s12934-015-0222-8.
SSUFSCP (State Service of Ukraine on Food
Safety and Consumer Protection) (2021) African
Swine Fever [Afrykanska chuma svynei]. Available at: https://www.asf.vet.ua.
[in Ukrainian].
Tao, H., Liu, W.,
Simmons, B. N., Harris, H. K., Cox, T. C. and
Massiah, M. A. (2010) ‘Purifying natively folded proteins from
inclusion bodies using sarkosyl, Triton X-100, and CHAPS’, BioTechniques,
48(1), pp. 61–64. doi: https://doi.org/10.2144/000113304.
Thomas, P. and Smart, T. G.
(2005) ‘HEK293 cell line: A vehicle for the expression of recombinant
proteins’, Journal of Pharmacological and Toxicological Methods,
51(3), pp. 187–200. doi: https://doi.org/10.1016/j.vascn.2004.08.014.
Yang, Z., Zhang, L., Zhang, Y.,
Zhang, T., Feng, Y., Lu, X., Lan, W., Wang, J.,
Wu, H., Cao, C. and Wang, X. (2011) ‘Highly efficient
production of soluble proteins from insoluble inclusion bodies by a
two-step-denaturing and refolding method’, PLoS ONE, 6(7),
p. e22981. doi: https://doi.org/10.1371/journal.pone.0022981.
Zani, L., Forth, J. H.,
Forth, L., Nurmoja, I., Leidenberger, S., Henke, J.,
Carlson, J., Breidenstein, C., Viltrop, A., Höper, D.,
Sauter-Louis, C., Beer, M. and Blome, S. (2018) ‘Deletion
at the 5’-end of Estonian ASFV strains associated with an attenuated
phenotype’, Scientific Reports, 8(1), p. 6510. doi: https://doi.org/10.1038/s41598-018-24740-1.
Zhao, X., Li, G. and Liang, S.
(2013) ‘Several affinity tags commonly used in chromatographic
purification’, Journal of Analytical Methods in Chemistry, 2013,
pp. 581093. doi: https://doi.org/10.1155/2013/581093.