Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 7, Issue 4, December 2021, Pages 31–35

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

MICROBIAL BIOFILMS AND MICROBIAL CONTAMINATION OF FEED FOR LIVESTOCK ANIMALS: CHALLENGES AND WAYS TO OVERCOME THEM

Kolchyk O. V. 1, Levytskyi Т. R. 2, Buzun A. І. 1, Çelik E. 3, Hrynchenko D. M. 4, Korovin І. V. 1, Orda Yu. V. 1

1 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: kolchyk-elena@ukr.net

2 State Scientific Research Control Institute of Veterinary Medicinal Products and Fodder Additives, Lviv, Ukraine

3 Kafkas University, Kars, Turkey

4 State Biotechnological University, Kharkiv, Ukraine

Download PDF (print version)

Citation for print version: Kolchyk, O. V., Levytskyi, Т. R., Buzun, A. І., Çelik, E., Hrynchenko, D. M., Korovin, І. V. and Orda, Yu. V. (2021) ‘Microbial biofilms and microbial contamination of feed for livestock animals: Challenges and ways to overcome them’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 7(4), pp. 31–35.

Download PDF (online version)

Citation for online version: Kolchyk, O. V., Levytskyi, Т. R., Buzun, A. І., Çelik, E., Hrynchenko, D. M., Korovin, І. V. and Orda, Yu. V. (2021) ‘Microbial biofilms and microbial contamination of feed for livestock animals: Challenges and ways to overcome them’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 7(4), pp. 31–35. DOI: 10.36016/JVMBBS-2021-7-4-6.

Summary. The article describes the problem of microbial contamination of feed in animal husbandry and the microflora that causes mastitis in lactating cows. The microbial contamination of 52 commercial batches of fodder from 5 farms of 3 regions of Ukraine (barley, corn silage, oat haylage, alfalfa hay, sunflower meal) has been determined. Pasteurella multocida in association with Neisseria lactamica, Actinobacillus pleuropneumonia, Clostridium perfringens was isolated from 61.5% of barley, 66.7% of corn silage, 60.0% of alfalfa hay, and 50.0% of sunflower meal. 262 samples of milk from cows with mastitis have been studied. Aspergillus candidus, Aspergillus niger were most often isolated in association with Mycoplasma bovis, Streptococcus agalactiae, Candida albicans, Neisseria sicca, Clostridium perfringens. High film-forming activity of microorganisms in feed was determined, by optical density: Pasteurella multocida + Actinobacillus pleuropneumonia D620 = 3.76 and Pasteurella multocida, Actinobacillus pleuropneumonia, Neisseria lactamica D620 = 3.62. While from the milk of cows with mastitis we isolated associations of microorganisms that were strong producers of biofilms by the optical densities D620 = 4.02 and 4.23

Keywords: cows, mastitis, bacteria, fungi

References:

Austin, J. W., Sanders, G., Kay, W. W. and Collinson, S. K. (1998) ‘Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation’, FEMS Microbiology Letters, 162(2), pp. 295–301. doi: 10.1111/j.1574-6968.1998.tb13012.x.

Bednarska, N. G., Schymkowitz, J., Rousseau, F. and Van Eldere, J. (2013) ‘Protein aggregation in bacteria: The thin boundary between functionality and toxicity’, Microbiology, 159(9), pp. 1795–1806. doi: 10.1099/mic.0.069575-0.

Borgersen, Q., Bolick, D. T., Kolling, G. L., Aijuka, M., Ruiz-Perez, F., Guerrant, R. L., Nataro, J. P. and Santiago, A. E. (2018) ‘Abundant production of exopolysaccharide by EAEC strains enhances the formation of bacterial biofilms in contaminated sprouts’, Gut Microbes, 9(3), pp. 264–278. doi: 10.1080/19490976.2018.1429877.

Dewachter, L., Fauvart, M. and Michiels, J. (2019) ‘Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance’, Molecular Cell, 76(2), pp. 255–267. doi: 10.1016/j.molcel.2019.09.028.

EC (European Commission) (2007) A New Animal Health Strategy for the European Union (2007–2013) Where ‘Prevention is Better than Cure’. Luxembourg: Office for Official Publications of the European Communities. Communication COM 539 (2007). ISBN 9789279067228. Available at: https://ec.europa.eu/food/animals/animal-health/eu-animal-health-strategy-2007-2013_en.

EP and CEU (The European Parliament and the Council of the European Union) (2017) ‘Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products, amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/EC and Council Decision 92/438/EEC (Official Controls Regulation)’, Official Journal of the European Communities, L 95, pp. 1–142. Available at: http://data.europa.eu/eli/reg/2017/625/oj.

Flemming, H.-C. and Wingender, J. (2010) ‘The biofilm matrix’, Nature Reviews Microbiology, 8(9), pp. 623–633. doi: 10.1038/nrmicro2415.

Garrett, T. R., Bhakoo, M. and Zhang, Z. (2008) ‘Bacterial adhesion and biofilms on surfaces’, Progress in Natural Science, 18(9), pp. 1049–1056. doi: 10.1016/j.pnsc.2008.04.001.

Gostev, V. V. and Sidorenko, S. V. (2010) ‘Bacterial biofilms and infections’ [Bakterial’nye bioplenki i infektsii], Journal Infectology [Zhurnal infektologii], 2(3), рр4–15. Available at: https://www.elibrary.ru/item.asp?id=15259020. [in Russian].

Guzmán-Soto, I., McTiernan, C., Gonzalez-Gomez, M., Ross, A., Gupta, K., Suuronen, E. J., Mah, T.-F., Griffith, M. and Alarcon, E. I. (2021) ‘Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models’, iScience, 24(5), p. 102443. doi: 10.1016/j.isci.2021.102443.

Karatan, E. and Watnick, P. (2009) ‘Signals, regulatory networks, and materials that build and break bacterial biofilms’, Microbiology and Molecular Biology Reviews, 73(2), pp. 310–347. doi: 10.1128/MMBR.00041-08.

Lazăr, V. and Chifiriuc, M. C. (2010) ‘Medical significance and new therapeutical strategies for biofilm associated infections’, Roumanian Archives of Microbiology and Immunology, 69(3), pp. 125–138. PMID: 21434589.

Magana, M., Sereti, C., Ioannidis, A., Mitchell, C. A., Ball, A. R., Magiorkinis, E., Chatzipanagiotou, S., Hamblin, M. R., Hadjifrangiskou, M. and Tegos, G. P. (2018) ‘Options and limitations in clinical investigation of bacterial biofilms’, Clinical Microbiology Reviews, 31(3), pp. e00084-16. doi: 10.1128/CMR.00084-16.

MAPFU (Ministry of Agrarian Policy and Food of Ukraine). (2012) On Approval of the List of Maximum Permissible Levels of Undesirable Substances in Feed and Feed Materials for Animals [Pro zatverdzhennia Pereliku maksymalno dopustymykh rivniv nebazhanykh rechovyn u kormakh ta kormovii syrovyni dlia tvaryn] (decree No. 131, 19.03.2012). Available at: https://zakon.rada.gov.ua/laws/z0503-12. [in Ukrainian].

O’Loughlin, C. T., Miller, L. C., Siryaporn, A., Drescher, K., Semmelhack, M. F. and Bassler, B. L. (2013) ‘A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation’, Proceedings of the National Academy of Sciences, 110(44), pp. 17981–17986. doi: 10.1073/pnas.1316981110.

O’Toole, G. A. and Kolter, R. (1998) ‘Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis’, Molecular Microbiology, 28(3), pp. 449–461. doi: 10.1046/j.1365-2958.1998.00797.x.

Pu, Y., Zhao, Z., Li, Y., Zou, J., Ma, Q., Zhao, Y., Ke, Y., Zhu, Y., Chen, H., Baker, M. A. B., Ge, H., Sun, Y., Xie, X. S. and Bai, F. (2016) ‘Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells’, Molecular Cell, 62(2), pp. 284–294. doi: 10.1016/j.molcel.2016.03.035.

Roy, R., Tiwari, M., Donelli, G. and Tiwari, V. (2018) ‘Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action’, Virulence, 9(1), pp. 522–554. doi: 10.1080/21505594.2017.1313372.

Santos-Lopez, A., Marshall, C. W., Scribner, M. R., Snyder, D. J. and Cooper, V. S. (2019) ‘Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle’, eLife, 8, p. e47612. doi: 10.7554/eLife.47612.

Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C. and Arenas, J. (2020) ‘Biofilms as promoters of bacterial antibiotic resistance and tolerance’, Antibiotics, 10(1), p. 3. doi: 10.3390/antibiotics10010003.

Vorobey, E. S., Voronkova, O. S. and Vinnikov, A. I. (2012) ‘Bacterial biofilms. Bacteria Quorum sensing in biofilms’ [Bakterialni bioplivky. Quorum sensing — ‘vidchuttia kvorumu’ u bakterii v bioplivkakh], Visnyk of Dnipropetrovsk University. Series: Biology, Ecology [Visnyk Dnipropetrovskoho universytetu. Seriia: Biolohiia. Ekolohiia], 20(1), pp. 13–22. doi: 10.15421/011202. [in Ukrainian].

Zhang, K., Li, X., Yu, C. and Wang, Y. (2020) ‘Promising therapeutic strategies against microbial biofilm challenges’, Frontiers in Cellular and Infection Microbiology, 10, p. 359. doi: 10.3389/fcimb.2020.00359.