Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
7, Issue 4, December 2021, Pages 31–35
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
MICROBIAL BIOFILMS AND
MICROBIAL CONTAMINATION OF FEED FOR LIVESTOCK ANIMALS: CHALLENGES AND WAYS TO
OVERCOME THEM
Kolchyk O. V. 1, Levytskyi Т. R. 2, Buzun A. І. 1, Çelik E. 3, Hrynchenko D. M. 4,
Korovin І. V. 1, Orda Yu. V. 1
1 National
Scientific Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: kolchyk-elena@ukr.net
2 State Scientific Research Control Institute of
Veterinary Medicinal Products and Fodder Additives, Lviv,
Ukraine
3 Kafkas University, Kars, Turkey
4 State
Biotechnological University, Kharkiv, Ukraine
Download
PDF (print version)
Citation for print version: Kolchyk, O. V.,
Levytskyi, Т. R., Buzun, A. І., Çelik, E., Hrynchenko, D. M., Korovin, І. V.
and Orda, Yu. V. (2021) ‘Microbial
biofilms and microbial contamination of feed for livestock animals: Challenges
and ways to overcome them’, Journal
for Veterinary Medicine, Biotechnology and Biosafety, 7(4),
pp. 31–35.
Download
PDF (online version)
Citation for online version: Kolchyk, O. V.,
Levytskyi, Т. R., Buzun, A. І., Çelik, E., Hrynchenko, D. M., Korovin, І. V.
and Orda, Yu. V. (2021) ‘Microbial
biofilms and microbial contamination of feed for livestock animals: Challenges
and ways to overcome them’, Journal
for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 7(4), pp. 31–35. DOI: 10.36016/JVMBBS-2021-7-4-6.
Summary. The article describes the problem of microbial
contamination of feed in animal husbandry and the microflora
that causes mastitis in lactating cows. The microbial contamination of
52 commercial batches of fodder from 5 farms
of 3 regions of Ukraine (barley, corn silage, oat haylage,
alfalfa hay, sunflower meal) has been determined. Pasteurella multocida in association with Neisseria lactamica,
Actinobacillus pleuropneumonia,
Clostridium perfringens was
isolated from 61.5% of barley, 66.7% of corn silage, 60.0% of alfalfa hay, and
50.0% of sunflower meal. 262 samples of milk from
cows with mastitis have been studied. Aspergillus candidus, Aspergillus niger
were most often isolated in association with Mycoplasma bovis, Streptococcus agalactiae, Candida albicans,
Neisseria sicca,
Clostridium perfringens.
High film-forming activity of microorganisms in feed was
determined, by optical density: Pasteurella multocida + Actinobacillus pleuropneumonia D620 = 3.76
and Pasteurella multocida, Actinobacillus pleuropneumonia,
Neisseria lactamica
D620 = 3.62. While from the milk of cows with
mastitis we isolated associations of microorganisms that were strong producers
of biofilms by the optical densities D620 = 4.02
and 4.23
Keywords: cows, mastitis, bacteria, fungi
References:
Austin, J. W., Sanders, G.,
Kay, W. W. and Collinson, S. K.
(1998) ‘Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation’, FEMS Microbiology Letters, 162(2),
pp. 295–301. doi:
10.1111/j.1574-6968.1998.tb13012.x.
Bednarska, N. G.,
Schymkowitz, J., Rousseau, F. and Van Eldere, J. (2013) ‘Protein aggregation in
bacteria: The thin boundary between functionality and toxicity’, Microbiology,
159(9), pp. 1795–1806. doi:
10.1099/mic.0.069575-0.
Borgersen, Q.,
Bolick, D. T., Kolling, G. L.,
Aijuka, M., Ruiz-Perez, F., Guerrant, R. L., Nataro, J. P.
and Santiago, A. E. (2018) ‘Abundant production of exopolysaccharide by EAEC strains
enhances the formation of bacterial biofilms in contaminated sprouts’, Gut
Microbes, 9(3), pp. 264–278. doi: 10.1080/19490976.2018.1429877.
Dewachter, L.,
Fauvart, M. and Michiels, J.
(2019) ‘Bacterial heterogeneity and antibiotic survival: understanding
and combatting persistence and heteroresistance’,
Molecular Cell, 76(2), pp. 255–267. doi: 10.1016/j.molcel.2019.09.028.
EC
(European Commission) (2007) A New Animal
Health Strategy for the European Union (2007–2013) Where
‘Prevention is Better than Cure’. Luxembourg: Office for
Official Publications of the European Communities. Communication
COM 539 (2007). ISBN 9789279067228. Available at: https://ec.europa.eu/food/animals/animal-health/eu-animal-health-strategy-2007-2013_en.
EP and CEU (The
European Parliament and the Council of the European Union) (2017)
‘Regulation (EU) 2017/625 of the European Parliament and of the Council
of 15 March 2017 on official controls and other official activities
performed to ensure the application of food and feed law, rules on animal
health and welfare, plant health and plant protection products, amending
Regulations (EC) No 999/2001, (EC) No 396/2005, (EC)
No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU)
No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament
and of the Council, Council Regulations (EC) No 1/2005 and (EC)
No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC,
2008/119/EC and 2008/120/EC, and repealing Regulations (EC) No 854/2004
and (EC) No 882/2004 of the European Parliament and of the Council,
Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC,
96/93/EC and 97/78/EC and Council Decision 92/438/EEC (Official Controls
Regulation)’, Official Journal of the European Communities,
L 95, pp. 1–142. Available at: http://data.europa.eu/eli/reg/2017/625/oj.
Flemming, H.-C. and Wingender, J. (2010) ‘The biofilm matrix’,
Nature Reviews Microbiology, 8(9), pp. 623–633. doi: 10.1038/nrmicro2415.
Garrett, T. R., Bhakoo, M.
and Zhang, Z. (2008) ‘Bacterial adhesion and biofilms on
surfaces’, Progress in Natural Science, 18(9),
pp. 1049–1056. doi:
10.1016/j.pnsc.2008.04.001.
Gostev, V. V.
and Sidorenko, S. V. (2010)
‘Bacterial biofilms and infections’ [Bakterial’nye
bioplenki i infektsii], Journal Infectology
[Zhurnal infektologii],
2(3), рр. 4–15.
Available at: https://www.elibrary.ru/item.asp?id=15259020. [in Russian].
Guzmán-Soto, I.,
McTiernan, C., Gonzalez-Gomez, M.,
Ross, A., Gupta, K., Suuronen, E. J.,
Mah, T.-F., Griffith, M. and
Alarcon, E. I. (2021) ‘Mimicking biofilm formation and
development: Recent progress in in vitro
and in vivo biofilm models’, iScience, 24(5), p. 102443. doi: 10.1016/j.isci.2021.102443.
Karatan, E. and Watnick, P.
(2009) ‘Signals, regulatory networks, and materials that build and break
bacterial biofilms’, Microbiology and Molecular Biology Reviews,
73(2), pp. 310–347. doi:
10.1128/MMBR.00041-08.
Lazăr, V.
and Chifiriuc, M. C. (2010) ‘Medical
significance and new therapeutical strategies for
biofilm associated infections’, Roumanian
Archives of Microbiology and Immunology, 69(3), pp. 125–138. PMID: 21434589.
Magana, M., Sereti, C.,
Ioannidis, A., Mitchell, C. A., Ball, A. R., Magiorkinis, E., Chatzipanagiotou, S.,
Hamblin, M. R., Hadjifrangiskou, M.
and Tegos, G. P. (2018) ‘Options and
limitations in clinical investigation of bacterial biofilms’, Clinical
Microbiology Reviews, 31(3), pp. e00084-16. doi: 10.1128/CMR.00084-16.
MAPFU (Ministry of Agrarian Policy and Food of Ukraine). (2012) On
Approval of the List of Maximum Permissible Levels of Undesirable Substances in
Feed and Feed Materials for Animals [Pro zatverdzhennia
Pereliku maksymalno dopustymykh rivniv nebazhanykh rechovyn u kormakh ta kormovii syrovyni dlia tvaryn]
(decree No. 131, 19.03.2012). Available at: https://zakon.rada.gov.ua/laws/z0503-12. [in Ukrainian].
O’Loughlin, C. T.,
Miller, L. C., Siryaporn, A., Drescher, K., Semmelhack, M. F.
and Bassler, B. L. (2013) ‘A
quorum-sensing inhibitor blocks Pseudomonas aeruginosa
virulence and biofilm formation’, Proceedings of the National Academy
of Sciences, 110(44), pp. 17981–17986. doi: 10.1073/pnas.1316981110.
O’Toole, G. A. and Kolter, R.
(1998) ‘Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds
via multiple, convergent signalling pathways: a
genetic analysis’, Molecular Microbiology, 28(3),
pp. 449–461. doi:
10.1046/j.1365-2958.1998.00797.x.
Pu, Y.,
Zhao, Z., Li, Y., Zou, J.,
Ma, Q., Zhao, Y., Ke, Y.,
Zhu, Y., Chen, H., Baker, M. A. B., Ge, H., Sun, Y., Xie, X. S.
and Bai, F. (2016) ‘Enhanced efflux
activity facilitates drug tolerance in dormant bacterial cells’, Molecular
Cell, 62(2), pp. 284–294. doi:
10.1016/j.molcel.2016.03.035.
Roy, R., Tiwari, M.,
Donelli, G. and Tiwari, V.
(2018) ‘Strategies for combating bacterial biofilms: A focus on anti-biofilm
agents and their mechanisms of action’, Virulence, 9(1),
pp. 522–554. doi:
10.1080/21505594.2017.1313372.
Santos-Lopez, A.,
Marshall, C. W., Scribner, M. R., Snyder, D. J.
and Cooper, V. S. (2019) ‘Evolutionary pathways to antibiotic
resistance are dependent upon environmental structure and bacterial
lifestyle’, eLife, 8, p. e47612. doi:
10.7554/eLife.47612.
Uruén, C., Chopo-Escuin, G.,
Tommassen, J., Mainar-Jaime, R. C.
and Arenas, J. (2020) ‘Biofilms as promoters of bacterial antibiotic
resistance and tolerance’, Antibiotics, 10(1), p. 3. doi:
10.3390/antibiotics10010003.
Vorobey, E. S., Voronkova, O. S.
and Vinnikov, A. I. (2012) ‘Bacterial
biofilms. Bacteria Quorum sensing
in biofilms’ [Bakterialni bioplivky.
Quorum sensing — ‘vidchuttia
kvorumu’ u bakterii v
bioplivkakh], Visnyk
of Dnipropetrovsk University. Series: Biology, Ecology [Visnyk Dnipropetrovskoho universytetu.
Seriia: Biolohiia. Ekolohiia],
20(1), pp. 13–22. doi:
10.15421/011202. [in Ukrainian].
Zhang, K.,
Li, X., Yu, C. and Wang, Y. (2020) ‘Promising therapeutic
strategies against microbial biofilm challenges’, Frontiers in
Cellular and Infection Microbiology, 10, p. 359. doi:
10.3389/fcimb.2020.00359.