Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
8, Issue 1–2, May 2022, Pages 23–29
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
STUDY OF THE SAFETY AND HARMLESSNESS
OF A DISINFECTANT IN LABORATORY ANIMALS
Chechet O. M. 1,
Kovalenko V. L. 2
1 State Scientific and Research Institute of
Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine
2 State Scientific Control Institute of
Biotechnology and Strains of Microorganisms, Kyiv, Ukraine, e-mail: kovalenkodoktor@gmail.com
Download
PDF (print version)
Citation for print version: Chechet, O. M. and Kovalenko, V. L.
(2022) ‘Study of the safety and harmlessness of a disinfectant in
laboratory animals’, Journal
for Veterinary Medicine, Biotechnology and Biosafety, 8(1–2),
pp. 23–29.
Download
PDF (online version)
Citation for online version: Chechet, O. M. and Kovalenko, V. L.
(2022) ‘Study of the safety and harmlessness of a disinfectant in
laboratory animals’, Journal
for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 8(1–2), pp. 23–29. DOI: 10.36016/JVMBBS-2022-8-1-2-4.
Summary. The work aimed to investigate the effect of the
disinfectant ‘Diolaid’ based on sodium chlorite and sodium chloride
on acute toxicity indicators, as well as on blood parameters of laboratory
animals. The experiments were carried out on 6-month-old clinically healthy
male rats (5 groups, 6 animals in each group, n = 30) and
female rats (5 groups, 6 animals in each group, n = 30)
weighing 200–220 g. The drug was administered to animals
intragastrically (by probe) and aerosol treatment of cells with animals was
carried out. Separately we studied the skin-irritating and sensitizing action
of the disinfectant ‘Diolaid’ on the groups of clinically healthy
guinea pigs and rats weighing 250–300 g by a daily application on
their back and sides of different concentrations of the drug for 30 days
for 30 min periods. In addition, we tested the effect of
‘Diolaid’ on nonspecific immune response indicators of these animal
species (bactericidal activity of blood serum, level of circulating immune
complexes, T and B cells, etc.). The
work used modern humane methods of care and use of laboratory animals. It was
found that after intragastric administration of ‘Diolaid’, the
average lethal dose (LD50) for male rats was 182 mg/kg of body
weight, and for female rats it was 170 mg/kg. It has been proven that the
drug has a temporary irritating and sensitizing effect and does not adversely
affect the parameters of hematopoiesis and non-specific immune response in the
form of a 0.06% solution. The research results indicate the low toxicity of the
‘Diolaid’ drug for laboratory animals and the possibility of its
use in low concentrations both for treating cages in the presence of animals
and for treating the animals themselves. For disinfection of water during its
storage in containers, we used the concentration of the ‘Diolaid’
drug (by chlorine dioxide) of 0.5–2 mg/l (0.0002–0.0008%),
depending on the degree of purity of the water to be treated. Such
concentrations ensure compliance of the chlorite residual concentrations with
hygienic standards
Keywords: rats, guinea pigs, acute toxicity, irritating
and sensitizing effects, immune response
References:
Addie, D. D.,
Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T.,
Hartmann, K., Horzinek, M. C., Hosie, M. J.,
Lloret, A., Lutz, H., Marsilio, F., Pennisi, M. G.,
Radford, A. D., Thiry, E., Truyen, U., Möstl, K.
and European Advisory Board on Cat Diseases (2015) ‘Disinfectant choices
in veterinary practices, shelters and households: ABCD guidelines on safe and
effective disinfection for feline environments’, Journal of Feline
Medicine and Surgery, 17(7), pp. 594–605. doi: 10.1177/1098612X15588450.
Bercz, J. P., Jones, L.,
Garner, L., Murray, D., Ludwig, D. A. and Boston, J.
(1982) ‘Subchronic toxicity of chlorine dioxide and related compounds in
drinking water in the nonhuman primate.’, Environmental Health
Perspectives, 46, pp. 47–55. doi: 10.1289/ehp.824647.
Buckmaster, C. (2012) ‘Shifting the
culture of lab animal care’, Lab
Animal (NY), 41(7), p. 205. doi: 10.1038/laban0712-205.
CE (The Council of Europe). (1986) European Convention for the Protection of
Vertebrate Animals Used for Experimental and Other Scientific Purposes.
(European Treaty Series, No. 123). Strasbourg: The Council of Europe.
Available at: https://conventions.coe.int/treaty/en/treaties/html/123.htm.
CEC (The Council of the European Communities)
(2010) ‘Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals used for
scientific purposes’, The Official
Journal of the European Communities, L 276, pp. 33–79.
Available at: http://data.europa.eu/eli/dir/2010/63/oj.
Daniel, F. B., Condie, L. W.,
Robinson, M., Stober, J. A., York, R. G.,
Olson, G. R. and Wang, S.-R. (1990) ‘Comparative
subchronic toxicity studies of three disinfectants’, Journal -
American Water Works Association, 82(10), pp. 61–69. doi: 10.1002/j.1551-8833.1990.tb07038.x.
Ge, Y., Zhang, X., Shu, L. and
Yang, X. (2021) ‘Kinetics and mechanisms of virus inactivation by
chlorine dioxide in water treatment: A review’, Bulletin of
Environmental Contamination and Toxicology, 106(4), pp. 560–567.
doi: 10.1007/s00128-021-03137-3.
Gebel, J., Exner, M.,
French, G., Chartier, Y., Christiansen, B., Gemein, S.,
Goroncy-Bermes, P., Hartemann, P., Heudorf, U., Kramer, A.,
Maillard, J.-Y., Oltmanns, P., Rotter, M. and
Sonntag, H.-G. (2013) ‘The role of surface disinfection in infection
prevention’, GMS Hygiene and Infection Control, 8(1), p. 10. doi: 10.3205/DGKH000210.
Gosstandart (The
USSR State Committee of Standards) (1976) GOST 12.1.007-76. Occupational
Safety Standards System. Noxious Substances. Classification and General Safety
Requirements [Sistema standartov bezopasnosti truda. Vrednye veshchestva. Klassifikatsiya
i obshchie trebovaniya bezopasnosti]. Moscow: Izdatel’stvo
standartov. [in Russian].
Haruta, S. and Kanno, N. (2015)
‘Survivability of microbes in natural environments and their ecological
impacts’, Microbes and Environments, 30(2), pp. 123–125.
doi: 10.1264/jsme2.ME3002rh.
Kotsiumbas, I. Ya.,
Malyk, O. H., Patereha, I. P., Tishyn, O. L. and
Kosenko, Yu. M. (2006) Preclinical
studies of veterinary drugs [Doklinichni doslidzhennia veterynarnykh likarskykh
zasobiv]. Lviv: Triada plus. ISBN 9667596648. [in Ukrainian].
Kovalenko V. L. and
Nedosiekov V. V. (2011) Methodical
Approaches to the Control of Disinfectants for Veterinary Medicine [Metodychni
pidkhody kontroliu dezinfikuiuchykh zasobiv dlia veterynarnoi medytsyny].
Kyiv. [in Ukrainian].
Kovalenko, V. L.,
Kovalenko, P. L., Ponomarenko, G. V., Kukhtyn, M. D.,
Midyk, S. V., Horiuk, Yu. V. and
Garkavenko, V. M. (2018) ‘Changes in lipid composition of Escherichia coli and Staphylococcus areus cells under the
influence of disinfectants Barez®, Biochlor® and Geocide®’, Ukrainian
Journal of Ecology, 8(1), pp. 547–550. doi: 10.15421/2018_248.
Kovalenko, V. L.,
Ponomarenko, G. V., Kukhtyn, M. D., Paliy, A. P.,
Bodnar, O. O., Rebenko, H. I., Kozytska, T. G.,
Makarevich, T. V., Ponomarenko, O. V. and
Palii, A. P. (2020) ‘Evaluation of acute toxicity of the
“Orgasept” disinfectant’, Ukrainian
Journal of Ecology, 10(4), pp. 273–278. doi: 10.15421/2020_1982.
Lin, W., Niu, B., Yi, J.,
Deng, Z., Song, J. and Chen, Q. (2018) ‘Toxicity and metal
corrosion of glutaraldehyde-didecyldimethylammonium bromide as a disinfectant
agent’, BioMed Research International, 2018, p. 9814209. doi:
10.1155/2018/9814209.
Lineback, C. B.,
Nkemngong, C. A., Wu, S. T., Li, X.,
Teska, P. J. and Oliver, H. F. (2018) ‘Hydrogen
peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than
quaternary ammonium compounds’, Antimicrobial Resistance and Infection
Control, 7(1), p. 154. doi: 10.1186/s13756-018-0447-5.
Ma, J.-W., Huang, B.-S.,
Hsu, C.-W., Peng, C.-W., Cheng, M.-L., Kao, J.-Y.,
Way, T.-D., Yin, H.-C. and Wang, S.-S. (2017) ‘Efficacy
and safety evaluation of a chlorine dioxide solution’, International
Journal of Environmental Research and Public Health, 14(3), p. 329.
doi: 10.3390/ijerph14030329.
MAPFU (Ministry of Agrarian Policy and Food of
Ukraine) (2011) SOU 85.2-37-736:2011.
Veterinary Preparations. Determination of Acute Toxicity [SOU 85.2-37-736:2011.
Preparaty veterynarni. Vyznachennia hostroi toksychnosti]. Kyiv: Ministry
of Agrarian Policy and Food of Ukraine. [in Ukrainian]
MHU (Ministry of Health of Ukraine) (2007) Methodological Recomendations
‘Sanitary and Epidemiological Supervision of Water Disinfection in
Systems of Centralized Household Drinking Water Supply with Chlorine
Dioxide’ (MR 2.2.4-147-2007): approved by the order of the Ministry
of Health of Ukraine of 30 July 2007 No. 430’ [Metodychni
rekomendatsii ‘Sanitarno-epidemiolohichnyi nahliad za znezarazhuvanniam
vody u systemakh tsentralizovanoho hospodarsko-pytnoho vodopostachannia
dioksydom khloru’ (MR 2.2.4-147-2007): zatverdzheno nakazom
Ministerstva okhorony zdorovia Ukrainy vid 30 lypnia 2007 r.
№ 430]. Available at: https://zakon.rada.gov.ua/rada/v0430282-07#o12.
[in Ukrainian].
MHU (Ministry of Health of Ukraine) (2010)
‘State Sanitary Norms and Rules “Hygienic Requirements for Drinking
Water Intended for Human Consumption” (SSanR&N 2.2.4-171-10):
approved by the order of the Ministry of Health of Ukraine of 12 May 2010
No. 400’ [Derzhavni sanitarni normy ta pravyla “Hihiienichni vymohy
do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu” (DSanPiN
2.2.4-171-10): zatverdzheno nakazom Ministerstva okhorony zdorovia Ukrainy vid
12 travnia 2010 r. № 400], Official Herald of Ukraine
[Ofitsiinyi visnyk Ukrainy], 51, art. 1717. Available at: https://zakon.rada.gov.ua/laws/z0452-10#n25.
[in Ukrainian].
MHUSSR (Ministry of Health of the Union of
Soviet Socialist Republics) (1980) Assessment
of the Impact of Harmful Chemical Compounds on the Skin and Substantiation of
the Maximum Permissible Levels of Skin Contamination: methodological guidelines
No. 2102-79 approved by the USSR
Deputy Chief Public Health Officer of 11 November 1979
No. 5793-91’ [Otsenka vozdeystviya vrednykh khimicheskikh soedineniy
na kozhnye pokrovy i obosnovanie predel’no dopustimykh urovney
zagryazneniy kozhi: metodicheskie ukazaniya № 2102-79, utverzhdennye
Zamestitelem Glavnogo Gosudarstvennogo sanitarnogo vracha SSSR 11 noyabrya 1979 g.].
Moscow: Ministry of Health of the USSR. [in Russian].
MHUSSR (Ministry of Health of the Union of
Soviet Socialist Republics) (1991) Maximum
Permissible Concentrations (MPC) and Approximate Permissible Levels (TAC) of
Harmful Substances in the Water of Water Bodies of Domestic Drinking and
Cultural and Community Water Use: approved by the order of the Ministry of
Health of USSR of 11 July 1991 No. 5793-91 [Predel’no
dopustimye kontsentratsii (PDK) i orientirovochnye dopustimye urovni (ODU)
vrednykh veshchestv v vode vodnykh ob”ektov khozyaystvenno-pit’evogo
i kul’turno-bytovogo vodopol’zovaniya: utverzhdeno prikazom
Ministerstva zdravookhraneniya SSSR vid 11 iyulya 1991 g.
№ 5793-91]. Available at: https://zakon.rada.gov.ua/laws/v5793400-91.
[in Russian].
Mokienko, A. V. (2021) Chlorine Dioxide: Applications in Water
Treatment Technologies [Dioksid khlora: primenenie v tekhnologiyakh
vodopodgotovki]. 2nd ed. Odessa: Feniks. ISBN 9789669286468.
Available at: https://repo.odmu.edu.ua/xmlui/handle/123456789/10872.
[in Russian].
Mokienko, A. V. and
Petrenko, N. F. (2008) ‘Hygienic estimation of virulicide
action of chlorine dioxide and its relation to prior enteroviruses of drinking
water and waster waters’ [Hihiienichna otsinka virulitsydnoi dii dioksydu
khloru po vidnoshenniu do priorytetnykh enterovirusiv pytnoi vody ta stichnykh
vod], Achievements of Biology and
Medicine [Dosiahnennia biolohii ta medytsyny], 2, pp. 52–57.
Available at: http://biomed.odmu.edu.ua/?p=5544&lang=en.
[in Ukrainian].
Mokienko, A. V.,
Petrenko, N. F. and Gozhenko, A. I. (2006)
‘Toxicologo-hygenical estimation of chlorine dioxide as facility of the
disinfection of water (the review of the literature and result of the own
studies)’ [Toksikologo-gigienicheskaya otsenka dioksida khlora kak
sredstva obezzarazhivaniya vody (obzor literatury i rezul’tatov sobstvennykh
issledovaniy)], Modern Problems of
Toxicology [Sovremennye problemy toksikologii], 4, pp. 44–49.
Available at: http://medved.kiev.ua/web_journals/arhiv/toxicology/2006/4_2006/str44.pdf.
[in Russian].
Mokienko, A. V.,
Petrenko, N. F., Gozhenko, A. I. and
Nasibulin, B. A. (2008) ‘Chlorine dioxide and drinking water.
Validation of harmfulness (report 3). Estimation of chlorates
signification as chlorine dioxide derivatives’ [Dioksid khlora i
pit’evaya voda. K obosnovaniyu bezvrednosti (soobshchenie 3).
Otsenka znachimosti khloratov kak proizvodnykh dioksida khlora], Modern Problems of Toxicology [Sovremennye
problemy toksikologii], 3, pp. 28–32. Available at: http://medved.kiev.ua/web_journals/arhiv/toxicology/2008/3_2008/str28.pdf.
[in Russian].
Moore, G. S. and
Calabrese, E. J. (1980) ‘The effects of chlorine dioxide and sodium
chlorite on erythrocytes of A/J and C57L/J mice’, Journal of
Environmental Pathology and Toxicology, 4(2–3),
pp. 513–524. PMID: 7462915.
Ngwenya, N., Ncube, E. J. and
Parsons, J. (2013) ‘Recent advances in drinking water disinfection:
successes and challenges’, in Whitacre, D. M. (ed.) Reviews
of Environmental Contamination and Toxicology. New York: Springer,
pp. 111–170. doi: 10.1007/978-1-4614-4717-7_4.
VRU (Verkhovna Rada Ukrainy) (2006) ‘Law
of Ukraine No. 3447-IV of
Yousef, M. I.,
Abuzreda, A. A. and Kamel, M. A. E.-N. (2019) ‘Neurotoxicity
and inflammation induced by individual and combined exposure to iron oxide
nanoparticles and silver nanoparticles’, Journal of Taibah University
for Science, 13(1), pp. 570–578. doi: 10.1080/16583655.2019.1602351.