Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 8, Issue 3–4, December 2022, Pages 28–38

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

NANOVIROSAN’ ANTIMICROBIAL COMPOSITE, DESIGNED FOR EMERGENCY EPIZOOTIC SITUATIONS AND SAFE USAGE IN ECOLOGICAL PIG FARMING

Buzun A. I. 1, Kychun I. V. 2, Kovalenko O. V. 3, Galitsa V. I. 4, Chornodolskyy Ya. M. 5, Kolchyk O. V. 1, Stegniy M. Yu. 1, Bobrovytska I. A. 1, Pavlenko B. M. 1

1 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: epibuz@ukr.net

2 Institute of Animal Biology of the National Academy of Agrarian Sciences of Ukraine, Lviv, Ukraine

2 SPCAriadna’ Ltd., Odesa, Ukraine

2 National Technical University ‘Kharkiv Polytechnic Institute’, Kharkiv, Ukraine

5 Ivan Franko National University of Lviv, Lviv, Ukraine

Download PDF (print version)

Citation for print version: Buzun, A. I., Kychun, I. V., Kovalenko, O. V., Galitsa, V. I., ChornodolskyyYa. M., Kolchyk, O. V., Stegniy, M. Yu., Bobrovytska, I. A., Pavlenko, B. M. (2022) ‘‘NanoViroSan’ antimicrobial composite, designed for emergency epizootic situations and safe usage in ecological pig farming’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 8(3–4), pp. 28–38.

Download PDF (online version)

Citation for online version: Buzun, A. I., Kychun, I. V., Kovalenko, O. V., Galitsa, V. I., ChornodolskyyYa. M., Kolchyk, O. V., Stegniy, M. Yu., Bobrovytska, I. A., Pavlenko, B. M. (2022) ‘‘NanoViroSan’ antimicrobial composite, designed for emergency epizootic situations and safe usage in ecological pig farming’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 8(3–4), pp. 28–38. DOI: 10.36016/JVMBBS-2022-8-3-4-6.

Summary. Analytical data of preclinical and clinical trials of the experimental veterinary composite drug ‘NanoViroSan’ (containing Methisazone, Silgeran and magnesium nanooxide) on laboratory models of Aujeszky’s (AD) and Teschen (TD) diseases, circovirus infections (PCV‑2) and actinobacillary pleuropneumonia (APP) as well as in enzootic foci of mixed infection of AD-PCV-APP and swine pox, are presented, respectively. At the level of statistical probability p ≤ 0.01–0.03 (n = 88), the absence of cytotoxic (n = 40, cultures of pig testicle cells and pig alveolar macrophages) and biotoxic effects (n = 48 guinea pigs) was proven, as well as high antimicrobial (viro- and bacteriostatic) activity of the drug in the concentration range (by Methisazone) of 1.0–4.0 mg/cm3. Intramuscular administration of the drug to male pedigree piglets in doses of 0.5 cm3/20 kg and 1.5 cm3/20 kg three times with an interval of a day made it possible to stop the carriage of the causative agents of mixed infection in the conditions of pig-breeding (n = 26, p ≤ 0.02). Similar treatment with the drug in a dose of 2 cm3/20 kg (by Methisazone) of a boar and five sows in another commodity farm made it possible to break the chain of vertical transmission of the causative agent of swine pox from the nucleus to offspring of the herd (n = 227, p ≤ 0.03). There conclusion was made regarding the perspective of experimental drug for bioprotection of pig farming in the conditions of martial law, as well, if additional research will be positive — as for the development of permaculture (‘green technologies’) in the field of pig breeding

Keywords: bioprotection, porcine virobacterial infections, swine pox, permaculture

References:

Althouse, G. C. and Lu, K. G. (2005) ‘Bacteriospermia in extended porcine semen’, Theriogenology, 63(2), pp. 573–584. doi: 10.1016/j.theriogenology.2004.09.031.

Andreani, A., Bonazzi, D., Cavrini, V., Gatti, R., Giovanninetti, G., Franchi, L. and Nanetti, A. (1977) ‘Ricerche su sostanze ad attività antivirale. Nota VII. Attività e lipofilia di tiosemicarbazoni di N-alchil-2-cloro-3-formilindoli.’, Il Farmaco; Edizione Scientifica, 32(10), pp. 703–712. PMID: 200469.

ANSES (Agence Nationale de Sécurité Sanitaire) (2018) Avis de l’Anses Saisine No 2017-SA-0058. Avis de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif à la fréquence des contrôles vis-à-vis de la maladie d’Aujeszky et de la peste porcine classique réalisés sur les verrats dans les centres de collecte de sperme. Available at: https://www.anses.fr/fr/system/files/SABA2017SA0058.pdf.

APHA (Animal and Plant Health Agency) (2022) Model Health Certificate for Imports of Semen of Domestic Animals of the Porcine Species From Non-EU Countries GBHC001X v3.1 October 2022. Addlestone: APHA. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1112906/GBHC001X_Porcine_semen__137-2012__from_non-EU_countries_v3.1_October-22.pdf.

Bauer, D. J., Apostolov, K. and Selway, J. W. T. (1970) ‘Activity of methisazone against viruses’, Annals of the New York Academy of Sciences, 173(1), pp. 314–319. doi: 10.1111/j.1749-6632.1970.tb53421.x.

Bisimwa, P. N., Dione, M., Basengere, B., Mushagalusa, C. A., Steinaa, L. and Ongus, J. (2021) ‘Risk factors of African swine fever virus in suspected infected pigs in smallholder farming systems in South-Kivu Province, Democratic Republic of Congo’, Journal of Veterinary Science, 22(3), p. e35. doi: 10.4142/jvs.2021.22.e35.

Buzun A., Kolchyk O., Pavlenko B. and Bobrovickaya I. (2022) ‘Vers l’farm initiative des pays du G7: récupération de la animale sans utilisation d’antibiotiques’, Actual Priorities of Modern Science, Education and Practice: proceedings of the ХХI international scientific and practical conference, Paris, France, 31 May–03 June 2022. Paris, pp. 865–871. doi: 10.46299/ISG.2022.1.21.

Buzun, A.-I. and Kolchyk, O. (2022) ‘Hypothèse de formation d’un foyer endémique de peste porcine africaine avec la participation de la microflore associative (analyse de cas cliniques)’, Débats Scientifiques et Orientations Prospectives du Développement Scientifique: collection de papiers scientifiquesΛΌГOΣ’ avec des matériaux de la IV conférence scientifique et pratique internationale, Paris, 11 novembre 2022. Paris-Vinnytsia: La FedeltàPlateforme scientifique européenne, pp. 49–54. doi: 10.36074/logos-11.11.2022.14.

BV-BRC (Bacterial and Viral Bioinformatics Resource Center) (2022) ‘Metisazone’, Antiviral Drug Details. Available at: https://www.viprbrc.org/brc/antiviralDrugDetails.spg?drugox&con-text = 1605-778338618.

Calabrese, E. J. (2008) ‘Hormesis: Why it is important to toxicology and toxicologists’, Environmental Toxicology and Chemistry, 27(7), pp. 1451–1474. doi: 10.1897/07-541.1.

De Zeeuw, A. and Klank, L. (1997) ‘Chapter 6. International trade in agricultural products’, in Hathaway, K. and Hathaway, D. (eds) Searching for Common Ground. European Union Enlargement and Agricultural Policy. (FAO Agricultural Policy and Economic Development Series, 1). Rome: FAO. Available at: https://www.fao.org/3/W7440E/w7440e07.htm.

Eggers, M., Schwebke, I., Suchomel, M., Fotheringham, V., Gebel, J., Meyer, B., Morace, G., Roedger, H. J., Roques, C., Visa, P. and Steinhauer, K. (2021) ‘The European tiered approach for virucidal efficacy testing — rationale for rapidly selecting disinfectants against emerging and re-emerging viral diseases’, Eurosurveillance, 26(3), p 2000708. doi: 10.2807/1560-7917.ES.2021.26.3.2000708.

FAO (Food and Agriculture Organization of the United Nations) (2022) The Importance of Ukraine and the Russian Federation for Global Agricultural Markets and the Risks Associated with the War In Ukraine Rome: FAO. Available at: https://www.fao.org/3/cb9013en/cb9013en.pdf.

Gallardo, C., Soler, A., Nieto, R., Sánchez, M. A., Martins, C., Pelayo, V., Carrascosa, A., Revilla, Y., Simón, A., Briones, V., Sánchez-Vizcaíno, J. M. and Arias, M. (2015) ‘Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs’, Transboundary and Emerging Diseases, 62(6), pp. 612–622. doi: 10.1111/tbed.12431.

Hashmi, S., Khan, S., Shafiq, Z., Taslimi, P., Ishaq, M., Sadeghian, N., Karaman, H. S., Akhtar, N., Islam, M., Asari, A., Mohamad, H. and Gulçin, İ. (2021) ‘Probing 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones as multi-target directed ligands against cholinesterases, carbonic anhydrases and α-glycosidase enzymes’, Bioorganic Chemistry, 107, p. 104554. doi: 10.1016/j.bioorg.2020.104554.

Henryon, M., Berg, P., Christensen, G., Jensen, J., Lund, M. S. and Korsgaard, I. R. (2003) ‘Visual assessment of post-mortem lesions exhibits little additive genetic variation in growing pigs’, Livestock Production Science, 83(2–3), pp. 121–130. doi: 10.1016/S0301-6226(03)00053-8.

Hess, C., Maegdefrau-Pollan, B., Bilic, I., Liebhart, D., Richter, S., Mitsch, P. and Hess, M. (2011) ‘Outbreak of cutaneous form of poxvirus on a commercial turkey farm caused by the species fowlpox’, Avian Diseases, 55(4), pp. 714–718. doi: 10.1637/9771-050511-Case.1.

Kim, Y. J., Jahan, N. and Bahk, Y. Y. (2013) ‘Biochemistry and structure of phosphoinositide phosphatases’, BMB Reports, 46(1), pp. 1–8. doi: 10.5483/BMBRep.2013.46.1.261.

Levinson, W. (1975) ‘Inhibition of viruses, tumors, and pathogenic microorganisms by isatin β-thiosemicarbazone and other thiosemicarbazones’, in Carter, W. A. (ed.) Selective Inhibitors of Viral Functions. London: CRC Press, pp. 213–226. doi: 10.1201/9781351076562.

Li, X., Zhao, D., Li, W., Sun, J. and Zhang, X. (2021) ‘Enzyme inhibitors: The best strategy to tackle superbug NDM-1 and its variants’, International Journal of Molecular Sciences, 23(1), p. 197. doi: 10.3390/ijms23010197.

Linciano, P., Cendron, L., Gianquinto, E., Spyrakis, F. and Tondi, D. (2019) ‘Ten years with New Delhi metallo-β-lactamase-1 (NDM-1): From structural Insights to inhibitor design’, ACS Infectious Diseases, 5(1), pp. 9–34. doi: 10.1021/acsinfecdis.8b00247.

Lozjuk, R. M., Lisnyak, O. I. and Lozjuk, L. V. (1996) ‘Theoretical grounds and experimental confirmation of the antiviral effect of the preparation Ukrain’, Drugs Under Experimental and Clinical Research, 22(3–5), pp. 213–217. PMID: 8899334.

Maes, D., Nauwynck, H., Rijsselaere, T., Mateusen, B., Vyt, P., De Kruif, A. and Van Soom, A. (2008) ‘Diseases in swine transmitted by artificial insemination: An overview’, Theriogenology, 70(8), pp. 1337–1345. doi: 10.1016/j.theriogenology.2008.06.018.

Maroto Martín, L. O., Muñoz, E. C., De Cupere, F., Van Driessche, E., Echemendia-Blanco, D., Rodríguez, J. M. M. and Beeckmans, S. (2010) ‘Bacterial contamination of boar semen affects the litter size’, Animal Reproduction Science, 120(1–4), pp. 95–104. doi: 10.1016/j.anireprosci.2010.03.008.

Monga, M. and Roberts, J. A. (1994) ‘Sperm agglutination by bacteria: receptor-specific interactions’, American Society of Andrology, 15(2), pp. 151–156. doi: 10.1002/j.1939-4640.1994.tb00423.x.

Monger, X. C., Gilbert, A.-A., Saucier, L. and Vincent, A. T. (2021) ‘Antibiotic resistance: From pig to meat’, Antibiotics, 10(10), p. 1209. doi: 10.3390/antibiotics10101209.

Müller, M. and Brem, G. (1991) ‘Disease resistance in farm animals’, Experientia, 47(9), pp. 923–934. doi: 10.1007/BF01929883.

NSC ’IECVM’ (National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’) (2020) Pathogens of Reproductive and Neonatal Infections of Pigs: Restoration of Biodiversity and Infectious Activity of Strains. (Standard Operating Procedure of the NSCIECVM’ No. 3. PD/2020, valid until 12/29/2023). Kharkiv: NSC ’IECVM’.

Patskovsky, Yu. V., Negrebetskaya, E. N., Chernomaz, A. A., Voloshchuk, T. P., Rubashevsky, E. L., Kitam, O. E., Tereshchenko, M. I., Nosach, L. N. and Potopalsky, A. I. (1996) ‘Aromatic thiosemicarbazones, their antiviral action and interferon. 1. The decreasing of adenovirus type 1 resistance against interferon by methisazone in vitro’, Biopolymers and Cell, 12(2), pp. 74–83. doi: 10.7124/bc.000425.

RIRDC (Rural Industries Research and Development Corporation) (2008) Requirements for New Animal Products Traceability Systems. (RIRDC Publication, 08/011; RIRDC Project, WBT-3A). Barton, ACT: RIRDC. Available at: https://www.agrifutures.com.au/wp-content/uploads/publications/08-011.pdf.

Schulze, M., Ammon, C., Rüdiger, K., Jung, M. and Grobbel, M. (2015) ‘Analysis of hygienic critical control points in boar semen production’, Theriogenology, 83(3), pp. 430–437. doi: 10.1016/j.theriogenology.2014.10.004.

SCVMU (State Committee of Veterinary Medicine of Ukraine) (2007) Order No. 21 from 21.12.2007 ‘On approval of Guidance on prevention and rehabilitation of cattle from bovine leukemia’ [Nakaz № 21 vid 21.12.2007 ‘Pro zatverdzhennia Instruktsii z profilaktyky ta ozdorovlennia velykoi rohatoi khudoby vid leikozu’], Official Bulletin of Ukraine [Ofitsiinyi visnyk Ukrainy], 4, p. 39, art. 116. Available at: https://zakon.rada.gov.ua/laws/show/z0012-08. [in Ukrainian].

Sidoli, L. and Pascucci, S. (1998) ‘Actinobacillus’, in Farina, R. and Scatozza, F. (eds) Trattato di Malattie Infettive Degli Animali. 2nd ed. Torino: UTET, pp. 203–212. ISBN: 9788802053158.

SPOU (State Patent Office of Ukraine) and NASU (National Academy of Sciences of Ukraine) (1995) Instructions on the Procedure of the Deposit of Microorganisms Strains in Ukraine for the Purposes of Patent Procedure. Approved by the Order of the SPOU and NANU of June 26, 1995, No. 106/115. Available at: https://zakon.rada.gov.ua/laws/show/z0286-95. [in Ukrainian].

SSUFSCP (State Service of Ukraine on Food Safety and Consumer Protection) (2022) ‘ASF cases in Ukraine since 2012’ [Vypadky AChS v Ukraini z 2012 roku], African Swine Fever [Afrykanska chuma svynei]. Available at: https://www.asf.vet.ua/purpose-project/about-asf/198-asf-cases-in-ukraine-since-2012. [in Ukrainian].

Supuran, C. T. (2021) ‘Novel carbonic anhydrase inhibitors’, Future Medicinal Chemistry, 13(22), pp. 1935–1937. doi: 10.4155/fmc-2021-0222.

Tarka, P. and Nitsch-Osuch, A. (2021) ‘Evaluating the virucidal activity of disinfectants according to European Union standards’, Viruses, 13(4), p. 534. doi: 10.3390/v13040534.

The World Bank (2022) Agriculture and Food: Overview. Available at: https://www.worldbank.org/en/topic/agriculture/overview (Accessed: 1 April 2022).

WHO Expert Committee on Specifications for Pharmaceutical Preparations (2002) ‘Annex 3. Good practices for national pharmaceutical control laboratories’, WHO Technical Report Series, 902, pp. 27–68. Available at: https://www.who.int/publications/i/item/WHO_TRS_902.

WIPO (World Intellectual Property Organization) (1980) Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure (as amended on September 26, 1980). Geneva: WIPO. Available at: https://www.wipo.int/treaties/en/registration/budapest.

Zhang, X.-M., Guo, H., Li, Z.-S., Song, F.-H., Wang, W.-M., Dai, H.-Q., Zhang, L.-X. and Wang, J.-G. (2015) ‘Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species’, European Journal of Medicinal Chemistry, 101, pp. 419–430. doi: 10.1016/j.ejmech.2015.06.047.