Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
8, Issue 3–4, December 2022, Pages 28–38
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
‘NANOVIROSAN’
ANTIMICROBIAL COMPOSITE, DESIGNED FOR EMERGENCY EPIZOOTIC SITUATIONS AND SAFE
USAGE IN ECOLOGICAL PIG FARMING
Buzun A. I. 1, Kychun I. V. 2, Kovalenko O. V. 3, Galitsa V. I. 4, Chornodolskyy Ya. M. 5,
Kolchyk O. V. 1, Stegniy M. Yu. 1,
Bobrovytska I. A. 1, Pavlenko B. M. 1
1 National
Scientific Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: epibuz@ukr.net
2 Institute of
Animal Biology of the National Academy of Agrarian Sciences of Ukraine, Lviv, Ukraine
2 SPC ‘Ariadna’ Ltd.,
Odesa, Ukraine
2 National
Technical University ‘Kharkiv Polytechnic
Institute’, Kharkiv, Ukraine
5 Ivan Franko
National University of Lviv, Lviv,
Ukraine
Download
PDF (print version)
Citation for print version: Buzun, A. I.,
Kychun, I. V., Kovalenko, O. V.,
Galitsa, V. I., Chornodolskyy, Ya. M., Kolchyk, O. V.,
Stegniy, M. Yu., Bobrovytska, I. A.,
Pavlenko, B. M. (2022) ‘‘NanoViroSan’ antimicrobial composite, designed for
emergency epizootic situations and safe usage in ecological pig farming’,
Journal for Veterinary Medicine,
Biotechnology and Biosafety, 8(3–4), pp. 28–38.
Download
PDF (online version)
Citation for online version: Buzun, A. I.,
Kychun, I. V., Kovalenko, O. V.,
Galitsa, V. I., Chornodolskyy, Ya. M., Kolchyk, O. V.,
Stegniy, M. Yu., Bobrovytska, I. A.,
Pavlenko, B. M. (2022) ‘‘NanoViroSan’ antimicrobial composite, designed for
emergency epizootic situations and safe usage in ecological pig farming’,
Journal for
Veterinary Medicine, Biotechnology and Biosafety. [Online] 8(3–4), pp. 28–38. DOI: 10.36016/JVMBBS-2022-8-3-4-6.
Summary. Analytical data of preclinical and clinical trials
of the experimental veterinary composite drug ‘NanoViroSan’
(containing Methisazone, Silgeran
and magnesium nanooxide) on laboratory models of Aujeszky’s (AD) and Teschen
(TD) diseases, circovirus infections (PCV‑2)
and actinobacillary pleuropneumonia (APP) as well as
in enzootic foci of mixed infection of AD-PCV-APP and
swine pox, are presented, respectively. At the level of statistical probability
p ≤ 0.01–0.03 (n = 88), the absence of
cytotoxic (n = 40, cultures of pig testicle cells and pig alveolar
macrophages) and biotoxic effects (n = 48
guinea pigs) was proven, as well as high antimicrobial (viro-
and bacteriostatic) activity of the drug in the concentration range (by Methisazone) of 1.0–4.0 mg/cm3.
Intramuscular administration of the drug to male pedigree piglets in doses of
0.5 cm3/20 kg and 1.5 cm3/20 kg three times with an interval of a
day made it possible to stop the carriage of the causative agents of mixed
infection in the conditions of pig-breeding (n = 26, p ≤ 0.02).
Similar treatment with the drug in a dose of 2 cm3/20 kg
(by Methisazone) of a boar and five sows in another
commodity farm made it possible to break the chain of vertical transmission of
the causative agent of swine pox from the nucleus to offspring of the herd (n = 227,
p ≤ 0.03). There conclusion was made
regarding the perspective of experimental drug for bioprotection
of pig farming in the conditions of martial law, as well, if additional
research will be positive — as for the development of permaculture (‘green
technologies’) in the field of pig breeding
Keywords: bioprotection, porcine virobacterial infections, swine pox,
permaculture
References:
Althouse, G. C. and
Lu, K. G. (2005) ‘Bacteriospermia in
extended porcine semen’, Theriogenology,
63(2), pp. 573–584. doi:
10.1016/j.theriogenology.2004.09.031.
Andreani, A., Bonazzi, D., Cavrini, V.,
Gatti, R., Giovanninetti, G.,
Franchi, L. and Nanetti, A.
(1977) ‘Ricerche su sostanze ad attività
antivirale. Nota VII. Attività
e lipofilia di tiosemicarbazoni
di N-alchil-2-cloro-3-formilindoli.’, Il Farmaco; Edizione Scientifica, 32(10), pp. 703–712. PMID: 200469.
ANSES (Agence
Nationale de Sécurité
Sanitaire) (2018) Avis de l’Anses Saisine
No 2017-SA-0058. Avis de l’Agence nationale de sécurité
sanitaire de l’alimentation, de l’environnement et du
travail relatif à la fréquence
des contrôles vis-à-vis de la maladie d’Aujeszky et de la
peste porcine classique réalisés sur les verrats
dans les centres de collecte de sperme. Available
at: https://www.anses.fr/fr/system/files/SABA2017SA0058.pdf.
APHA (Animal and Plant
Health Agency) (2022) Model Health
Certificate for Imports of Semen of Domestic Animals of the Porcine Species From Non-EU Countries GBHC001X v3.1 October 2022. Addlestone:
APHA. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1112906/GBHC001X_Porcine_semen__137-2012__from_non-EU_countries_v3.1_October-22.pdf.
Bauer, D. J., Apostolov, K. and Selway, J. W. T. (1970) ‘Activity of methisazone against viruses’, Annals of the New
York Academy of Sciences, 173(1), pp. 314–319. doi: 10.1111/j.1749-6632.1970.tb53421.x.
Bisimwa, P. N.,
Dione, M., Basengere, B., Mushagalusa, C. A., Steinaa, L.
and Ongus, J. (2021) ‘Risk factors of
African swine fever virus in suspected infected pigs in smallholder farming
systems in South-Kivu Province, Democratic Republic of Congo’, Journal
of Veterinary Science, 22(3), p. e35. doi: 10.4142/jvs.2021.22.e35.
Buzun A., Kolchyk O., Pavlenko B.
and Bobrovickaya I. (2022) ‘Vers l’farm initiative des
pays du G7: récupération
de la animale sans utilisation
d’antibiotiques’, Actual Priorities of Modern Science, Education and Practice:
proceedings of the ХХI international
scientific and practical conference, Paris, France,
31 May–03 June 2022. Paris, pp. 865–871. doi: 10.46299/ISG.2022.1.21.
Buzun, A.-I. and Kolchyk, O.
(2022) ‘Hypothèse de formation d’un
foyer endémique de peste
porcine africaine avec la participation de la microflore associative (analyse
de cas cliniques)’, Débats Scientifiques
et Orientations Prospectives du Développement
Scientifique: collection de papiers scientifiques ‘ΛΌГOΣ’
avec des matériaux de la IV conférence scientifique et
pratique internationale,
Paris, 11 novembre 2022. Paris-Vinnytsia: La Fedeltà
& Plateforme scientifique
européenne, pp. 49–54. doi: 10.36074/logos-11.11.2022.14.
BV-BRC (Bacterial and Viral Bioinformatics
Resource Center) (2022) ‘Metisazone’, Antiviral Drug Details. Available at: https://www.viprbrc.org/brc/antiviralDrugDetails.spg?drugox&con-text = 1605-778338618.
Calabrese, E. J. (2008) ‘Hormesis: Why
it is important to toxicology and toxicologists’, Environmental
Toxicology and Chemistry, 27(7), pp. 1451–1474. doi: 10.1897/07-541.1.
De Zeeuw, A. and Klank, L.
(1997) ‘Chapter 6. International trade in agricultural products’,
in Hathaway, K. and Hathaway, D. (eds) Searching
for Common Ground. European Union Enlargement and Agricultural Policy. (FAO
Agricultural Policy and Economic Development Series, 1). Rome: FAO. Available
at: https://www.fao.org/3/W7440E/w7440e07.htm.
Eggers, M., Schwebke, I., Suchomel, M., Fotheringham, V., Gebel, J.,
Meyer, B., Morace, G., Roedger, H. J.,
Roques, C., Visa, P. and Steinhauer, K.
(2021) ‘The European tiered approach for virucidal
efficacy testing — rationale for rapidly selecting disinfectants
against emerging and re-emerging viral diseases’, Eurosurveillance,
26(3), p 2000708. doi: 10.2807/1560-7917.ES.2021.26.3.2000708.
FAO (Food and Agriculture Organization of the United Nations) (2022) The Importance of Ukraine and the Russian
Federation for Global Agricultural Markets and the Risks Associated with the
War In Ukraine Rome: FAO. Available at: https://www.fao.org/3/cb9013en/cb9013en.pdf.
Gallardo, C., Soler, A., Nieto, R., Sánchez, M. A.,
Martins, C., Pelayo, V., Carrascosa, A., Revilla, Y., Simón, A.,
Briones, V., Sánchez-Vizcaíno, J. M.
and Arias, M. (2015) ‘Experimental transmission of African swine
fever (ASF) low virulent isolate NH/P68 by surviving pigs’, Transboundary and Emerging
Diseases, 62(6), pp. 612–622. doi: 10.1111/tbed.12431.
Hashmi, S., Khan, S., Shafiq, Z., Taslimi, P., Ishaq, M.,
Sadeghian, N., Karaman, H. S.,
Akhtar, N., Islam, M., Asari, A.,
Mohamad, H. and Gulçin, İ.
(2021) ‘Probing 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones
as multi-target directed ligands against cholinesterases,
carbonic anhydrases and α-glycosidase enzymes’, Bioorganic
Chemistry, 107, p. 104554. doi:
10.1016/j.bioorg.2020.104554.
Henryon, M.,
Berg, P., Christensen, G., Jensen, J., Lund, M. S. and
Korsgaard, I. R. (2003) ‘Visual
assessment of post-mortem lesions exhibits little additive genetic variation in
growing pigs’, Livestock Production Science, 83(2–3),
pp. 121–130. doi:
10.1016/S0301-6226(03)00053-8.
Hess, C., Maegdefrau-Pollan, B., Bilic, I., Liebhart, D.,
Richter, S., Mitsch, P. and Hess, M.
(2011) ‘Outbreak of cutaneous form of poxvirus on a commercial turkey
farm caused by the species fowlpox’, Avian
Diseases, 55(4), pp. 714–718. doi: 10.1637/9771-050511-Case.1.
Kim, Y. J., Jahan, N. and Bahk, Y. Y.
(2013) ‘Biochemistry and structure of phosphoinositide phosphatases’,
BMB Reports, 46(1), pp. 1–8.
doi: 10.5483/BMBRep.2013.46.1.261.
Levinson, W. (1975) ‘Inhibition of viruses, tumors, and pathogenic
microorganisms by isatin β-thiosemicarbazone
and other thiosemicarbazones’, in
Carter, W. A. (ed.) Selective
Inhibitors of Viral Functions. London: CRC Press, pp. 213–226. doi: 10.1201/9781351076562.
Li, X., Zhao, D., Li, W., Sun, J. and Zhang, X.
(2021) ‘Enzyme inhibitors: The best strategy to tackle superbug NDM-1 and its variants’, International Journal of
Molecular Sciences, 23(1), p. 197. doi: 10.3390/ijms23010197.
Linciano, P., Cendron, L., Gianquinto, E.,
Spyrakis, F. and Tondi, D.
(2019) ‘Ten years with New Delhi metallo-β-lactamase-1
(NDM-1): From structural Insights to inhibitor design’,
ACS Infectious Diseases, 5(1), pp. 9–34. doi: 10.1021/acsinfecdis.8b00247.
Lozjuk, R. M., Lisnyak, O. I. and Lozjuk, L. V.
(1996) ‘Theoretical grounds and experimental confirmation of the
antiviral effect of the preparation Ukrain’, Drugs
Under Experimental and Clinical Research,
22(3–5), pp. 213–217. PMID: 8899334.
Maes, D., Nauwynck, H., Rijsselaere, T.,
Mateusen, B., Vyt, P.,
De Kruif, A. and Van Soom, A. (2008) ‘Diseases in swine transmitted
by artificial insemination: An overview’, Theriogenology,
70(8), pp. 1337–1345. doi:
10.1016/j.theriogenology.2008.06.018.
Maroto Martín, L. O.,
Muñoz, E. C., De Cupere, F.,
Van Driessche, E., Echemendia-Blanco, D.,
Rodríguez, J. M. M. and Beeckmans, S.
(2010) ‘Bacterial contamination of boar semen affects the litter size’,
Animal Reproduction Science, 120(1–4), pp. 95–104. doi: 10.1016/j.anireprosci.2010.03.008.
Monga, M. and
Roberts, J. A. (1994) ‘Sperm agglutination by bacteria:
receptor-specific interactions’, American Society of Andrology,
15(2), pp. 151–156. doi:
10.1002/j.1939-4640.1994.tb00423.x.
Monger, X. C., Gilbert, A.-A., Saucier, L. and
Vincent, A. T. (2021) ‘Antibiotic resistance: From pig to meat’,
Antibiotics, 10(10), p. 1209. doi:
10.3390/antibiotics10101209.
Müller, M. and Brem, G. (1991) ‘Disease
resistance in farm animals’, Experientia,
47(9), pp. 923–934. doi:
10.1007/BF01929883.
NSC ’IECVM’ (National Scientific Center ‘Institute
of Experimental and Clinical Veterinary Medicine’) (2020) Pathogens of Reproductive and Neonatal
Infections of Pigs: Restoration of Biodiversity and Infectious Activity of
Strains. (Standard Operating Procedure of the NSC
‘IECVM’ No. 3. PD/2020, valid until
12/29/2023). Kharkiv: NSC ’IECVM’.
Patskovsky, Yu. V., Negrebetskaya, E. N., Chernomaz, A. A.,
Voloshchuk, T. P., Rubashevsky, E. L.,
Kitam, O. E., Tereshchenko, M. I.,
Nosach, L. N. and Potopalsky, A. I.
(1996) ‘Aromatic thiosemicarbazones, their
antiviral action and interferon. 1. The decreasing
of adenovirus type 1 resistance against interferon by methisazone
in vitro’, Biopolymers and
Cell, 12(2), pp. 74–83. doi:
10.7124/bc.000425.
RIRDC (Rural Industries
Research and Development Corporation) (2008) Requirements for New Animal Products Traceability Systems. (RIRDC Publication, 08/011; RIRDC
Project, WBT-3A). Barton, ACT: RIRDC.
Available at: https://www.agrifutures.com.au/wp-content/uploads/publications/08-011.pdf.
Schulze, M., Ammon, C., Rüdiger, K.,
Jung, M. and Grobbel, M. (2015) ‘Analysis
of hygienic critical control points in boar semen production’, Theriogenology, 83(3), pp. 430–437. doi: 10.1016/j.theriogenology.2014.10.004.
SCVMU (State Committee of
Veterinary Medicine of Ukraine) (2007) Order No. 21 from 21.12.2007 ‘On approval of Guidance on prevention and rehabilitation of
cattle from bovine leukemia’ [Nakaz
№ 21 vid 21.12.2007 ‘Pro zatverdzhennia
Instruktsii z profilaktyky
ta ozdorovlennia velykoi rohatoi khudoby vid leikozu’], Official
Bulletin of Ukraine [Ofitsiinyi visnyk
Ukrainy], 4, p. 39, art. 116. Available
at: https://zakon.rada.gov.ua/laws/show/z0012-08. [in Ukrainian].
Sidoli, L. and Pascucci, S. (1998) ‘Actinobacillus’,
in Farina, R. and Scatozza, F. (eds) Trattato di Malattie Infettive
Degli Animali. 2nd ed. Torino: UTET,
pp. 203–212. ISBN: 9788802053158.
SPOU (State Patent Office
of Ukraine) and NASU (National Academy of Sciences of
Ukraine) (1995) Instructions on the
Procedure of the Deposit of Microorganisms Strains in Ukraine for the Purposes
of Patent Procedure. Approved by the Order of the SPOU
and NANU of June 26, 1995, No. 106/115.
Available at: https://zakon.rada.gov.ua/laws/show/z0286-95. [in Ukrainian].
SSUFSCP (State Service of
Ukraine on Food Safety and Consumer Protection) (2022) ‘ASF cases in Ukraine since 2012’ [Vypadky
AChS v Ukraini z 2012 roku], African Swine Fever [Afrykanska chuma svynei]. Available at: https://www.asf.vet.ua/purpose-project/about-asf/198-asf-cases-in-ukraine-since-2012. [in Ukrainian].
Supuran, C. T.
(2021) ‘Novel carbonic anhydrase inhibitors’, Future Medicinal
Chemistry, 13(22), pp. 1935–1937. doi: 10.4155/fmc-2021-0222.
Tarka, P. and Nitsch-Osuch, A. (2021) ‘Evaluating the virucidal activity of disinfectants according to European
Union standards’, Viruses, 13(4), p. 534. doi: 10.3390/v13040534.
The World Bank (2022) Agriculture
and Food: Overview. Available at: https://www.worldbank.org/en/topic/agriculture/overview (Accessed: 1 April 2022).
WHO Expert Committee on Specifications for Pharmaceutical Preparations
(2002) ‘Annex 3. Good practices for national pharmaceutical control
laboratories’, WHO Technical Report
Series, 902, pp. 27–68. Available at: https://www.who.int/publications/i/item/WHO_TRS_902.
WIPO (World Intellectual Property Organization) (1980) Budapest Treaty on the International Recognition of the Deposit of
Microorganisms for the Purposes of Patent Procedure (as amended on September
26, 1980). Geneva: WIPO. Available at: https://www.wipo.int/treaties/en/registration/budapest.
Zhang, X.-M., Guo, H., Li, Z.-S.,
Song, F.-H., Wang, W.-M., Dai, H.-Q., Zhang, L.-X. and Wang, J.-G. (2015) ‘Synthesis and evaluation
of isatin-β-thiosemicarbazones
as novel agents against antibiotic-resistant Gram-positive bacterial species’,
European Journal of Medicinal Chemistry, 101, pp. 419–430. doi: 10.1016/j.ejmech.2015.06.047.