Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
9, Issue 1–2, June 2023, Pages 20–30
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
BIOLOGICAL PROPERTIES OF NANOMATERIALS
(LITERATURE REVIEW)
Paliy A. P. 1,
Kovalenko L. V. 1, Romanko M. Ye. 2,
Stegniy M. Yu. 1, Kolchyk O. V. 1,
Zavgorodniy A. I. 1, Kornieikov O. M. 1
1 National Scientific
Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: paliy.dok@gmail.com
2 State Scientific
and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary
Expertise, Kyiv, Ukraine
Download
PDF (print version)
Citation for print version: Paliy, A. P.,
Kovalenko, L. V., Romanko, M. Ye.,
Stegniy, M. Yu., Kolchyk, O. V., Zavgorodniy, A. I.,
Kornieikov, O. M. (2023) ‘Biological properties of
nanomaterials (literature review)’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 9(1–2),
pp. 20–30.
Download
PDF (online version)
Citation for online version: Paliy, A. P.,
Kovalenko, L. V., Romanko, M. Ye.,
Stegniy, M. Yu., Kolchyk, O. V.,
Zavgorodniy, A. I., Kornieikov, O. M. (2023)
‘Biological properties of nanomaterials (literature review)’, Journal for Veterinary Medicine, Biotechnology and
Biosafety. [Online] 9(1–2), pp. 20–30. DOI: 10.36016/JVMBBS-2023-9-1-2-4.
Summary. In the article reviewed and discussed literature
data on biological properties of nanomaterials. The biosafety of nanomaterials
is a complex and multifaceted issue that demands a comprehensive, science-based
approach. Modern environmental and economic factors should be considered in
this regard. The EU’s nanotechnology policy is based on ‘an
integrated, safe and responsible approach’ (Communication from the
Commission to the European Parliament, the Council and the European Economic
and Social Committee. Regulatory aspects of nanomaterials. SEC(2008) 2036 / COM(2008) 366 final).
Based on the findings of toxicity and antimicrobial activity studies, metal
nanoparticles appear to be a favorable choice as antibacterial agents in
developing new disinfectants. However, further measures must be taken to ensure
the safe and environmentally friendly use of metal nanoparticles (MeNPs). To
achieve this, it is crucial to establish toxicity parameters for MeNPs of
various compositions, sizes, and concentrations. These parameters must be
compared and evaluated alongside the potential effects of MeNPs on laboratory
and target animals (in vivo), as well
as their antibacterial performance against microorganisms of different strains
(in vitro). Thus, the investigation
of possible hazards associated with the use of metal nanoparticles can be
effectively achieved by analyzing the fundamental systemic characteristics of
biological systems under both in vivo
and in vitro conditions, taking into
account various aspects such as physiological, biochemical, immunological,
genetic and cytological responses that may be affected by toxic effects. The
literary sources analysis and article publication were conducted under the
National Research Foundation of Ukraine project No. 2021.01/0076 'Development
of a novel, nanoparticle-based disinfectant for deactivation of pathogens
causing emergent infectious diseases'
Keywords: metal nanoparticles, cytotoxicity,
antimicrobial activity
References:
Abdelnour, S. A., Abd
El-Hack, M. E., Khafaga, A. F., Noreldin, A. E.,
Arif, M., Chaudhry, M. T., Losacco, C., Abdeen, A. and
Abdel-Daim, M. M. (2019) ‘Impacts of rare earth elements on
animal health and production: Highlights of cerium and lanthanum’, Science
of The Total Environment, 672, pp. 1021–1032. doi: 10.1016/j.scitotenv.2019.02.270.
Abraham, G. E., and
Himmel, P. B. (1997) ‘Management of rheumatoid arthritis:
Rationale for the use of colloidal metallic gold’, Journal of
Nutritional & Environmental Medicine, 7(4),
pp. 295–305. doi: 10.1080/13590849762411.
Alt, V., Bechert, T.,
Steinrücke, P., Wagener, M., Seidel, P.,
Dingeldein, E., Domann, E. and Schnettler, R. (2004) ‘An in
vitro assessment of the antibacterial properties and cytotoxicity of
nanoparticulate silver bone cement’, Biomaterials, 25(18),
pp. 4383–4391. doi: 10.1016/j.biomaterials.2003.10.078.
Amaro, F., Morón, Á.,
Díaz, S., Martín-González, A. and
Gutiérrez, J. C. (2021) ‘Metallic
nanoparticles — friends or foes in the battle against
antibiotic-resistant bacteria?’, Microorganisms, 9(2),
p. 364. doi: 10.3390/microorganisms9020364.
Anzai, Y., Piccoli, C. W.,
Outwater, E. K., Stanford, W., Bluemke, D. A.,
Nurenberg, P., Saini, S., Maravilla, K. R.,
Feldman, D. E., Schmiedl, U. P., Brunberg, J. A.,
Francis, I. R., Harms, S. E., Som, P. M. and
Tempany, C. M. (2003) ‘Evaluation of neck and body metastases
to nodes with ferumoxtran 10-enhanced MR imaging: Phase III safety and
efficacy study’, Radiology, 228(3), pp. 777–788. doi: 10.1148/radiol.2283020872.
Banerji, S. K. and
Hayes, M. A. (2007) ‘Examination of nonendocytotic bulk
transport of nanoparticles across phospholipid membranes’, Langmuir,
23(6), pp. 3305–3313. doi: 10.1021/la0622875.
Bawa, R. (2008).
‘Nanoparticle-based therapeutics in humans: A survey’, Nanotechnology
Law & Business, 5(2), pp. 135–155. Available at: https://www.researchgate.net/publication/282677427_Nanoparticle-based_therapeutics_in_humans_A_survey.
Bermudez, E., Mangum, J. B.,
Asgharian, B., Wong, B. A., Reverdy, E. E., Janszen, D. B.,
Hext, P. M., Warheit, D. B., and Everitt, J. I.
(2002) ‘Long-term pulmonary responses of three laboratory rodent species
to subchronic inhalation of pigmentary titanium dioxide particles’, Toxicological
Sciences, 70(1), pp. 86–97. doi: 10.1093/toxsci/70.1.86.
Bermudez, E., Mangum, J. B.,
Wong, B. A., Asgharian, B., Hext, P. M.,
Warheit, D. B. and Everitt, J. I. (2004) ‘Pulmonary
responses of mice, rats, and hamsters to subchronic inhalation of ultrafine
titanium dioxide particles’, Toxicological Sciences, 77(2),
pp. 347–357. doi: 10.1093/toxsci/kfh019.
Bishayee, A., Oinam, S.,
Basu, M. and Chatterjee, M. (2000) ‘Vanadium chemoprevention of
7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis: probable
involvement of representative hepatic phase I and II xenobiotic
metabolizing enzymes’, Breast Cancer Research and Treatment,
63(2), pp. 133–145. doi: 10.1023/A:1006476003685.
Braydich-Stolle, L., Hussain, S.,
Schlager, J. J. and Hofmann, M.-C. (2005) ‘In vitro
cytotoxicity of nanoparticles in mammalian germline stem cells’, Toxicological
Sciences, 88(2), pp. 412–419. doi: 10.1093/toxsci/kfi256.
Brunner, T. J., Wick, P.,
Manser, P., Spohn, P., Grass, R. N.,
Limbach, L. K., Bruinink, A. and Stark, W. J. (2006)
‘In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos,
silica, and the effect of particle solubility’, Environmental Science
& Technology, 40(14), pp. 4374–4381. doi: 10.1021/es052069i.
Cai, L., Park, Y. S.,
Seong, S. I., Yoo, S. W. and Kim, I. H. (2015)
‘Effects of rare earth elements-enriched yeast on growth performance,
nutrient digestibility, meat quality, relative organ weight, and excreta
microflora in broiler chickens’, Livestock Science, 172,
pp. 43–49. doi: 10.1016/j.livsci.2014.11.013.
CEC (The Commission
of the European Communities) (2008) Communication from the Commission to the
European Parliament, the Council and the European Economic and Social
Committee. Regulatory Aspects of Nanomaterials. SEC(2008) 2036/
COM(2008) 366 final. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52008DC0366.
Chen, Z., Meng, H., Xing, G.,
Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H.,
Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X.,
Ma, B. and Wan, L. (2006) ‘Acute toxicological effects of
copper nanoparticles in vivo’, Toxicology Letters, 163(2),
pp. 109–120. doi: 10.1016/j.toxlet.2005.10.003.
Colon, J., Herrera, L.,
Smith, J., Patil, S., Komanski, C., Kupelian, P.,
Seal, S., Jenkins, D. W. and Baker, C. H. (2009)
‘Protection from radiation-induced pneumonitis using cerium oxide nanoparticles’,
Nanomedicine: Nanotechnology, Biology and Medicine, 5(2),
pp. 225–231. doi: 10.1016/j.nano.2008.10.003.
Dahiya, J. P., Hoehler, D., Van
Kessel, A. G. and Drew, M. D. (2007) ‘Effect of different
dietary methionine sources on intestinal microbial populations in broiler
chickens’, Poultry Science, 86(11), pp. 2358–2366. doi:
10.3382/ps.2007-00133.
Di Meo, S. and Venditti, P.
(2020) ‘Evolution of the knowledge of free radicals and other
oxidants’, Oxidative Medicine and Cellular Longevity, 2020,
pp. 1–32. doi: 10.1155/2020/9829176.
Dimova, M., Tugai, A.,
Tugai, T., Iutynska, G., Dordevic, D. and Kushkevych, I.
(2022) ‘Molecular research of lipid peroxidation and antioxidant enzyme
activity of Comamonas testosteroni bacterial cells under the
hexachlorobenzene impact’, International Journal of Molecular Sciences,
23(19), p. 11415. doi: 10.3390/ijms231911415.
Donaldson, K., Aitken, R.,
Tran, L., Stone, V., Duffin, R., Forrest, G. and
Alexander, A. (2006) ‘Carbon nanotubes: A review of their properties
in relation to pulmonary toxicology and workplace safety’, Toxicological
Sciences, 92(1), pp. 5–22. doi: 10.1093/toxsci/kfj130.
Donaldson, K., Stone, V.,
Borm, P. J. A., Jimenez, L. A.,
Gilmour, P. S., Schins, R. P. F.,
Knaapen, A. M., Rahman, I., Faux, S. P.,
Brown, D. M. and MacNee, W. (2003) ‘Oxidative stress and
calcium signaling in the adverse effects of environmental particles
(PM10)’, Free Radical Biology and Medicine, 34(11),
pp. 1369–1382. doi: 10.1016/S0891-5849(03)00150-3.
Donaldson, K., Stone, V.,
Tran, C. L., Kreyling, W., and Borm, P. J. (2004)
‘Nanotoxicology’, Occupational and Environmental Medicine,
61(9), pp. 727–728. doi: 10.1136/oem.2004.013243.
Dong, Y., Zhu, H., Shen, Y.,
Zhang, W. and Zhang, L. (2019) ‘Antibacterial activity of
silver nanoparticles of different particle size against Vibrio
Natriegens’, PLoS One, 14(9), p. e0222322. doi: 10.1371/journal.pone.0222322.
El-Ansary, A. and Al-Daihan, S.
(2009) ‘On the toxicity of therapeutically used nanoparticles: An
overview’, Journal of Toxicology, 2009, pp. 1–9. doi: 10.1155/2009/754810.
Fan, M. Z., Adeola, O.,
Asem, E. K. and King, D. (2002) ‘Postnatal ontogeny of
kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase,
aminopeptidase N and sucrase activities’, Comparative Biochemistry
and Physiology Part A: Molecular & Integrative Physiology,
132(3), pp. 599–607. doi: 10.1016/S1095-6433(02)00102-2.
Farias, I. A. P.,
Santos, C. C. L. D. and Sampaio, F. C. (2018)
‘Antimicrobial activity of cerium oxide nanoparticles on opportunistic
microorganisms: A systematic review’, BioMed Research International,
2018, pp. 1–14. doi: 10.1155/2018/1923606.
Flachowski, G. (2003). ‘Huhn und
Schwein und seltene Erden’, Wirtschaft Erleben, 1,
pp. 6–7.
Francik, R., Krośniak, M.,
Barlik, M., Kudła, A., Gryboś, R. and
Librowski, T. (2011) ‘Impact of vanadium complexes treatment on the
oxidative stress factors in wistar rats plasma’, Bioinorganic
Chemistry and Applications, 2011, pp. 1–8. doi: 10.1155/2011/206316.
Friedman, N., Dagan, A.,
Elia, J., Merims, S. and Benny, O. (2021) ‘Physical
properties of gold nanoparticles affect skin penetration via hair
follicles’, Nanomedicine: Nanotechnology, Biology and Medicine,
36, p. 102414. doi: 10.1016/j.nano.2021.102414.
Galla, J. H. (2000) ‘Metabolic
Alkalosis’, Journal of the American Society of Nephrology, 11(2),
pp. 369–375. doi: 10.1681/ASN.V112369.
Gao, W., and Zhang, L. (2021)
‘Nanomaterials arising amid antibiotic resistance’, Nature
Reviews Microbiology, 19(1), pp. 5–6. doi: 10.1038/s41579-020-00469-5.
Garçon, G., Dagher, Z.,
Zerimech, F., Ledoux, F., Courcot, D., Aboukais, A.,
Puskaric, E. and Shirali, P. (2006) ‘Dunkerque City air
pollution particulate matter-induced cytotoxicity, oxidative stress and
inflammation in human epithelial lung cells (L132) in culture’, Toxicology
in Vitro, 20(4), pp. 519–528. doi: 10.1016/j.tiv.2005.09.012.
Gharbi, N., Pressac, M.,
Hadchouel, M., Szwarc, H., Wilson, S. R. and
Moussa, F. (2005) ‘[60]Fullerene is a powerful antioxidant in
vivo with no acute or subacute toxicity’, Nano Letters, 5(12),
pp. 2578–2585. doi: 10.1021/nl051866b.
Ghosh, S., Roy, P.,
Karmodak, N., Jemmis, E. D. and Mugesh, G. (2018)
‘Nanoisozymes: Crystal‐facet‐dependent enzyme‐mimetic activity of V2O5 nanomaterials’, Angewandte
Chemie International Edition, 57(17), pp. 4510–4515. doi: 10.1002/anie.201800681.
Gonca, S., Yefimova, S., Dizge, N.,
Tkachenko, A., Özdemir, S., Prokopiuk, V.,
Klochkov, V., Kavok, N., Onishchenko, A., Maksimchuk, P.,
Butov, D. and Ocakoglu, K. (2022) ‘Antimicrobial effects of
nanostructured rare-earth-based orthovanadates’, Current Microbiology,
79(9), p. 254. doi: 10.1007/5s00284-022-02947-w.
Guéraud, F., Atalay, M.,
Bresgen, N., Cipak, A., Eckl, P. M., Huc, L.,
Jouanin, I., Siems, W. and Uchida, K. (2010) ‘Chemistry
and biochemistry of lipid peroxidation products’, Free Radical
Research, 44(10), pp. 1098–1124. doi: 10.3109/10715762.2010.498477.
Harati, M., M. and
Ani, M., M. (2006) ‘Low doses of vanadyl sulfate protect rats
from lipid peroxidation and hypertriglyceridemic effects of fructose-enriched
diet’, International Journal of Diabetes and Metabolism, 14(3),
pp. 134–137. doi: 10.1159/000497605.
He, M. L., Wehr, U. and
Rambeck, W. A. (2010) ‘Effect of low doses of dietary rare
earth elements on growth performance of broilers’, Journal of Animal
Physiology and Animal Nutrition, 94(1), pp. 86–92. doi: 10.1111/j.1439-0396.2008.00884.x.
Hitchler, M. J. and
Domann, F. E. (2021) ‘The epigenetic and morphogenetic effects
of molecular oxygen and its derived reactive species in development’, Free
Radical Biology and Medicine, 170, pp. 70–84. doi: 10.1016/j.freeradbiomed.2021.01.008.
Hoet, P. H.,
Brüske-Hohlfeld, I. and Salata, O. V. (2004)
‘Nanoparticles — known and unknown health risks’, Journal
of Nanobiotechnology, 2(1), p. 12. doi: 10.1186/1477-3155-2-12.
Hosseini, M.-J., Shaki, F.,
Ghazi-Khansari, M. and Pourahmad, J. (2013) ‘Toxicity of
vanadium on isolated rat liver mitochondria: A new mechanistic approach’,
Metallomics, 5(2), p. 152. doi: 10.1039/c2mt20198d.
Hussain, N. (2001) ‘Recent advances
in the understanding of uptake of microparticulates across the gastrointestinal
lymphatics’, Advanced Drug Delivery Reviews, 50(1–2),
pp. 107–142. doi: 10.1016/S0169-409X(01)00152-1.
Hussain, S. M.,
Hess, K. L., Gearhart, J. M., Geiss, K. T. and
Schlager, J. J. (2005) ‘In vitro toxicity of
nanoparticles in BRL 3A rat liver cells’, Toxicology in Vitro,
19(7), pp. 975–983. doi: 10.1016/j.tiv.2005.06.034.
Jia, G., Wang, H., Yan, L.,
Wang, X., Pei, R., Yan, T., Zhao, Y. and Guo, X.
(2005) ‘Cytotoxicity of carbon nanomaterials: Single-wall nanotube,
multi-wall nanotube, and fullerene’, Environmental Science
& Technology, 39(5), pp. 1378–1383. doi: 10.1021/es048729l.
Jia, H. Y., Liu, Y.,
Zhang, X. J., Han, L., Du, L. B., Tian, Q. and
Xu, Y. C. (2009) ‘Potential oxidative stress of gold
nanoparticles by induced-NO releasing in serum’, Journal of the
American Chemical Society, 131(1), pp. 40–41. doi: 10.1021/ja808033w.
Jurisic, V. and Bumbasirevic, V.
(2008) ‘In vitro assays for cell death determination’, Archive
of Oncology, 16(3–4), pp. 49–54. doi: 10.2298/AOO0804049J.
Kagan, V. E., Bayir, H. and
Shvedova, A. A. (2005) ‘Nanomedicine and nanotoxicology: Two
sides of the same coin’, Nanomedicine: Nanotechnology, Biology and
Medicine, 1(4), pp. 313–316. doi: 10.1016/j.nano.2005.10.003.
Kim, J. S., Kuk, E.,
Yu, K. N., Kim, J.-H., Park, S. J.,
Lee, H. J., Kim, S. H., Park, Y. K.,
Park, Y. H., Hwang, C.-Y., Kim, Y.-K., Lee, Y.-S., Jeong, D. H. and Cho,
M.-H. (2007) ‘Antimicrobial effects of silver nanoparticles’, Nanomedicine:
Nanotechnology, Biology and Medicine, 3(1), pp. 95–101. doi: 10.1016/j.nano.2006.12.001.
Kipen, H. M. and
Laskin, D. L. (2005) ‘Smaller is not always better:
nanotechnology yields nanotoxicology’, American Journal of
Physiology-Lung Cellular and Molecular Physiology, 289(5),
pp. L696–L697. doi: 10.1152/ajplung.00277.2005.
Klingelhöfer, D., Braun, M.,
Dröge, J., Fischer, A., Brüggmann, D. and
Groneberg, D. A. (2022) ‘Environmental and health-related
research on application and production of rare earth elements under
scrutiny’, Globalization and Health, 18(1), p. 86. doi: 10.1186/s12992-022-00879-5.
Koshevoy, V. I.,
Naumenko, S. V., Klochkov, V. K. and
Yefimova, S. L. (2021) ‘The peculiarities of hormonal
background in boars under correction of reproductive capacity by gadolinium
orthovanadate nanoparticles’, Scientific Messenger of Lviv National
University of Veterinary Medicine and Biotechnologies. Series: Veterinary
Sciences, 23(104), pp. 66–70. doi: 10.32718/nvlvet10411.
Lam, C.-W. (2003) ‘Pulmonary
toxicity of single-wall carbon nanotubes in mice 7 and 90 days after
intratracheal instillation’, Toxicological Sciences, 77(1),
pp. 126–134. doi: 10.1093/toxsci/kfg243.
Landers, T. F., Cohen, B.,
Wittum, T. E. and Larson, E. L. (2012) ‘A review of
antibiotic use in food animals: Perspective, policy, and potential’, Public
Health Reports, 127(1), pp. 4–22. doi: 10.1177/003335491212700103.
Landry, R., Jacobs, P. M.,
Davis, R., Shenouda, M. and Bolton, W. K. (2005)
‘Pharmacokinetic study of ferumoxytol: A new iron replacement therapy in
normal subjects and hemodialysis patients’, American Journal of
Nephrology, 25(4), pp. 400–410. doi: 10.1159/000087212.
Lee, N.-Y., Ko, W.-C. and
Hsueh, P.-R. (2019) ‘Nanoparticles in the treatment of infections
caused by multidrug-resistant organisms’, Frontiers in Pharmacology,
10, p. 1153. doi: 10.3389/fphar.2019.01153.
Lei, J., Sun, L., Huang, S.,
Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H.
and He, Q. (2019) ‘The antimicrobial peptides and their potential
clinical applications’, American Journal of Translational Research,
11(7), pp. 3919–3931. PMID: 31396309.
Li, H., Zhou, Q., Wu, Y.,
Fu, J., Wang, T. and Jiang, G. (2009) ‘Effects of
waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic
activity, lipid peroxidation and histopathology’, Ecotoxicology and
Environmental Safety, 72(3), pp. 684–692. doi: 10.1016/j.ecoenv.2008.09.027.
Li, N., Sioutas, C., Cho, A.,
Schmitz, D., Misra, C., Sempf, J., Wang, M.,
Oberley, T., Froines, J. and Nel, A. (2003) ‘Ultrafine
particulate pollutants induce oxidative stress and mitochondrial damage’,
Environmental Health Perspectives, 111(4), pp. 455–460. doi: 10.1289/ehp.6000.
Li, S., Tan, H.-Y., Wang, N.,
Zhang, Z.-J., Lao, L., Wong, C.-W. and Feng, Y. (2015)
‘The role of oxidative stress and antioxidants in liver diseases’, International
Journal of Molecular Sciences, 16(11), pp. 26087–26124. doi: 10.3390/ijms161125942.
Lok, C.-N., Ho, C.-M.,
Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H.,
Tam, P. K.-H., Chiu, J.-F. and Che, C.-M. (2007)
‘Silver nanoparticles: Partial oxidation and antibacterial
activities’, JBIC Journal of Biological Inorganic Chemistry,
12(4), pp. 527–534. doi: 10.1007/s00775-007-0208-z.
Lu, X., Zhu, T., Chen, C. and
Liu, Y. (2014) ‘Right or left: The role of nanoparticles in
pulmonary diseases’, International Journal of Molecular Sciences,
15(10), pp. 17577–17600. doi: 10.3390/ijms151017577.
Lynch, I., Cedervall, T.,
Lundqvist, M., Cabaleiro-Lago, C., Linse, S. and
Dawson, K. A. (2007) ‘The nanoparticle–protein complex as
a biological entity; A complex fluids and surface science challenge for the 21st century’,
Advances in Colloid and Interface Science, 134–135,
pp. 167–174. doi: 10.1016/j.cis.2007.04.021.
Maksimchuk, P. O.,
Hubenko, K. O., Seminko, V. V.,
Karbivskii, V. L., Tkachenko, A. S.,
Onishchenko, A. I., Prokopyuk, V. Y. and
Yefimova, S. L. (2022) ‘High antioxidant activity of
gadolinium–yttrium orthovanadate nanoparticles in cell-free and
biological milieu’, Nanotechnology, 33(5), p. 055701. doi: 10.1088/1361-6528/ac31e5.
Manyi-Loh, C., Mamphweli, S.,
Meyer, E. and Okoh, A. (2018) ‘Antibiotic use in agriculture
and its consequential resistance in environmental sources: Potential public
health implications’, Molecules, 23(4), p. 795. doi: 10.3390/molecules23040795.
McNeilly, O., Mann, R.,
Hamidian, M. and Gunawan, C. (2021) ‘Emerging concern for
silver nanoparticle resistance in Acinetobacter baumannii and other
bacteria’, Frontiers in Microbiology, 12, p. 652863. doi: 10.3389/fmicb.2021.652863.
Meng, H., Chen, Z., Xing, G.,
Yuan, H., Chen, C., Zhao, F., Zhang, C. and Zhao, Y.
(2007) ‘Ultrahigh reactivity provokes nanotoxicity: Explanation of oral
toxicity of nano-copper particles’, Toxicology Letters,
175(1–3), pp. 102–110. doi: 10.1016/j.toxlet.2007.09.015.
Moghimi, S. M.,
Hunter, A. C. and Murray, J. C. (2001)
‘Long-circulating and target-specific nanoparticles: Theory to
practice’, Pharmacological Reviews, 53(2), pp. 283–318.
PMID: 11356986.
Müller, R. H. and
Keck, C. M. (2004) ‘Drug delivery to the brain —
realization by novel drug carriers’, Journal of Nanoscience and
Nanotechnology, 4(5), pp. 471–483. doi: 10.1166/jnn.2004.078.
Nemmar, A., Hoylaerts, M. F.,
Hoet, P. H. M., Dinsdale, D., Smith, T., Xu, H.,
Vermylen, J. and Nemery, B. (2002) ‘Ultrafine particles affect
experimental thrombosis in an in vivo hamster model’, American
Journal of Respiratory and Critical Care Medicine, 166(7),
pp. 998–1004. doi: 10.1164/rccm.200110-026OC.
Niño-Martínez, N., Salas
Orozco, M. F., Martínez-Castañón, G.-A.,
Torres Méndez, F. and Ruiz, F. (2019) ‘Molecular
mechanisms of bacterial resistance to metal and metal oxide nanoparticles’,
International Journal of Molecular Sciences, 20(11), p. 2808. doi: 10.3390/ijms20112808.
Oberdörster, G.,
Oberdörster, E. and Oberdörster, J. (2005)
‘Nanotoxicology: An emerging discipline evolving from studies of
ultrafine particles’, Environmental Health Perspectives, 113(7),
pp. 823–839. doi: 10.1289/ehp.7339.
Oberdörster, G. (2000)
‘Pulmonary effects of inhaled ultrafine particles’, International
Archives of Occupational and Environmental Health, 74(1),
pp. 1–8. doi: 10.1007/s004200000185.
Ou, X., Guo, Z. and Wang, J.
(2000) ‘The effects of rare earth element additive in feed on
piglets’, Livestock Poultry Industry, 4, pp. 194–198.
Pakulova, O. K.,
Klochkov, V. K., Kavok, N. S., Kostina, I. A.,
Sopotova, A. S. and Bondarenko, V. A. (2017) ‘Effect
of rare-earth-based nanoparticles on the erythrocyte osmotic adaptation’
[Vliyanie nanochastits na osnove redkozemel’nykh elementov na
osmoticheskuyu adaptatsiyu eritrotsitov], Biophysical Bulletin [Biofizychnyi
visnyk], 37(1), pp. 42–50. doi: 10.26565/2075-3810-2017-37-05.
[in Russian].
Paliy, A. P.,
Zavgorodnii, A. I., Kalashnyk, M. V.,
Shkromada, O. I., Rybachuk, Z. V.,
Dolbanosova, R. V., Kovalenko, L. M.,
Livoshchenko, Ye. M., Livoshchenko, L. P.,
Baidevliatova, Yu. V., Dunaiev, Yu. K.,
Palii, A. P., and Nedzheria, T. I. (2020) ‘Influence
of new frost-resistant disinfectant on the ultrastructural organization of
atypical mycobacteria’, Ukrainian Journal of Ecology, 10(3),
pp. 95–101. Available at: https://www.ujecology.com/abstract/influence-of-new-frostresistant-disinfectant-on-the-ultrastructural-organization-of-atypical-mycobacteria-55136.html.
Panáček, A.,
Kvítek, L., Smékalová, M.,
Večeřová, R., Kolář, M.,
Röderová, M., Dyčka, F., Šebela, M.,
Prucek, R., Tomanec, O. and Zbořil, R. (2018)
‘Bacterial resistance to silver nanoparticles and how to overcome
it’, Nature Nanotechnology, 13(1), pp. 65–71. doi: 10.1038/s41565-017-0013-y.
Peters, K., Unger, R. E.,
Kirkpatrick, C. J., Gatti, A. M. and Monari, E. (2004)
‘Effects of nano-scaled particles on endothelial cell function in
vitro: Studies on viability, proliferation and inflammation’, Journal
of Materials Science: Materials in Medicine, 15(4), pp. 321–325.
doi: 10.1023/B:JMSM.0000021095.36878.1b.
Piewngam, P., Chiou, J.,
Chatterjee, P. and Otto, M. (2020) ‘Alternative approaches to
treat bacterial infections: targeting quorum-sensing’, Expert Review
of Anti-Infective Therapy, 18(6), pp. 499–510. doi: 10.1080/14787210.2020.1750951.
Pomatto, L. C. D. and
Davies, K. J. A. (2018) ‘Adaptive homeostasis and the free
radical theory of ageing’, Free Radical Biology and Medicine, 124,
pp. 420–430. doi: 10.1016/j.freeradbiomed.2018.06.016.
Pop, O. L., Mesaros, A.,
Vodnar, D. C., Suharoschi, R., Tăbăran, F.,
Magerușan, L., Tódor, I. Sz., Diaconeasa, Z.,
Balint, A., Ciontea, L. and Socaciu, C. (2020) ‘Cerium
oxide nanoparticles and their efficient antibacterial application in vitro
against Gram-positive and Gram-negative pathogens’, Nanomaterials,
10(8), p. 1614. doi: 10.3390/nano10081614.
Prokopiuk, V., Yefimova, S.,
Onishchenko, A., Kapustnik, V., Myasoedov, V.,
Maksimchuk, P., Butov, D., Bespalova, I. and Tkachenko, A.
(2023) ‘Assessing the cytotoxicity of TiO2−x
nanoparticles with a different Ti3+(Ti2+)/Ti4+
ratio’, Biological Trace Element Research, 201(6),
pp. 3117–3130. doi: 10.1007/s12011-022-03403-3.
Raju, G., Katiyar, N.,
Vadukumpully, S. and Shankarappa, S. A. (2018)
‘Penetration of gold nanoparticles across the stratum corneum layer of
thick-skin’, Journal of Dermatological Science, 89(2),
pp. 146–154. doi: 10.1016/j.jdermsci.2017.11.001.
Rodionova, K., Кhimych, M. and
Paliy, A. (2021) ‘Veterinary and sanitary assessment and
disinfection of refrigerator chambers of meat processing enterprises’, Potravinarstvo
Slovak Journal of Food Sciences, 15, pp. 616–626. doi: 10.5219/1628.
Romanko, M., Orobchenko, O.,
Ushkalov, V., Paliy, A., Palii, A. and Chechui, H. (2023)
‘Evaluation of biochemical markers in the blood plasma of rats exposed to
chronic administration of a mixture of metal nanoparticles’, Veterinarska
Stanica, 54(1), pp. 69–85. doi: 10.46419/vs.54.1.10.
Romero-Calle, D., Guimarães
Benevides, R., Góes-Neto, A. and Billington, C. (2019)
‘Bacteriophages as alternatives to antibiotics in clinical care’, Antibiotics,
8(3), p. 138. doi: 10.3390/antibiotics8030138.
Sahoo, S. K., Parveen, S. and
Panda, J. J. (2007) ‘The present and future of nanotechnology
in human health care’, Nanomedicine: Nanotechnology, Biology and
Medicine, 3(1), pp. 20–31. doi: 10.1016/j.nano.2006.11.008.
Samrot, A. V., Ram
Singh, S. P., Deenadhayalan, R., Rajesh, V. V.,
Padmanaban, S. and Radhakrishnan, K. (2022) ‘Nanoparticles, a
double-edged sword with oxidant as well as antioxidant properties —
A review’, Oxygen, 2(4), pp. 591–604. doi: 10.3390/oxygen2040039.
Sánchez-López, E.,
Gomes, D., Esteruelas, G., Bonilla, L.,
Lopez-Machado, A. L., Galindo, R., Cano, A.,
Espina, M., Ettcheto, M., Camins, A., Silva, A. M.,
Durazzo, A., Santini, A., Garcia, M. L. and
Souto, E. B. (2020) ‘Metal-based nanoparticles as antimicrobial
agents: An overview’, Nanomaterials, 10(2), p. 292. doi: 10.3390/nano10020292.
Santamaria, A. (2012) ‘Historical
overview of nanotechnology and nanotoxicology’, in
Reineke, J. (ed.) Nanotoxicity. Methods in Molecular Biology, 926.
Totowa, NJ: Humana Press, pp. 1–12. doi: 10.1007/978-1-62703-002-1_1.
Scheringer, M. (2008)
‘Environmental risks of nanomaterials’, Nature Nanotechnology,
3(6), pp. 322–323. doi: 10.1038/nnano.2008.145.
Sharifi-Rad, M., Anil
Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L.,
Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V.,
Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y.,
Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N.,
Martorell, M., Docea, A. O., Setzer, W. N.,
Calina, D., Cho, W. C. and Sharifi-Rad, J. (2020)
‘Lifestyle, oxidative stress, and antioxidants: Back and forth in the
pathophysiology of chronic diseases’, Frontiers in Physiology, 11,
p. 694. doi: 10.3389/fphys.2020.00694.
Slavin, Y. N., Asnis, J.,
Häfeli, U. O. and Bach, H. (2017) ‘Metal
nanoparticles: Understanding the mechanisms behind antibacterial
activity’, Journal of Nanobiotechnology, 15(1), p. 65. doi: 10.1186/s12951-017-0308-z.
Smith, D. K. and
Korgel, B. A. (2008) ‘The importance of the CTAB surfactant on
the colloidal seed-mediated synthesis of gold nanorods’, Langmuir,
24(3), pp. 644–649. doi: 10.1021/la703625a.
Szewczyk, O. K.,
Roszczenko, P., Czarnomysy, R., Bielawska, A. and
Bielawski, K. (2022) ‘An overview of the importance of
transition-metal nanoparticles in cancer research’, International
Journal of Molecular Sciences, 23(12), p. 6688. doi: 10.3390/ijms23126688.
Tao, T. Y., Liu, F.,
Klomp, L., Wijmenga, C. and Gitlin, J. D. (2003) ‘The
copper toxicosis gene product MURR1 directly interacts with the Wilson
disease protein’, Journal of Biological Chemistry, 278(43),
pp. 41593–41596. doi: 10.1074/jbc.C300391200.
Tariq, H., Sharma, A., Sarkar, S.,
Ojha, L., Pal, R. P. and Mani, V. (2020)
‘Perspectives for rare earth elements as feed additive in
livestock — A review’, Asian-Australasian Journal of Animal
Sciences, 33(3), pp. 373–381. doi: 10.5713/ajas.19.0242.
Thaxton, C. S.,
Georganopoulou, D. G. and Mirkin, C. A. (2006) ‘Gold
nanoparticle probes for the detection of nucleic acid targets’, Clinica
Chimica Acta, 363(1–2), pp. 120–126. doi: 10.1016/j.cccn.2005.05.042.
Tommasi, F., Thomas, P. J.,
Pagano, G., Perono, G. A., Oral, R.,
Lyons, D. M., Toscanesi, M. and Trifuoggi, M. (2021)
‘Review of rare earth elements as fertilizers and feed additives: A
knowledge gap analysis’, Archives of Environmental Contamination and
Toxicology, 81(4), pp. 531–540. doi: 10.1007/s00244-020-00773-4.
Vernekar, A. A., Sinha, D.,
Srivastava, S., Paramasivam, P. U., D’Silva, P. and
Mugesh, G. (2014) ‘An antioxidant nanozyme that uncovers the
cytoprotective potential of vanadia nanowires’, Nature Communications,
5(1), p. 5301. doi: 10.1038/ncomms6301.
Vimbela, G., Ngo, S. M.,
Fraze, C., Yang, L. and Stout, D. A. (2017)
‘Antibacterial properties and toxicity from metallic
nanomaterials’, International Journal of Nanomedicine, 12,
pp. 3941–3965. doi: 10.2147/IJN.S134526.
Wang, J., Zhou, G., Chen, C.,
Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y.,
Li, B. and Sun, J. (2007) ‘Acute toxicity and biodistribution
of different sized titanium dioxide particles in mice after oral
administration’, Toxicology Letters, 168(2),
pp. 176–185. doi: 10.1016/j.toxlet.2006.12.001.
Wang, L., Hu, C. and Shao, L.
(2017) ‘The antimicrobial activity of nanoparticles: Present situation
and prospects for the future’, International Journal of Nanomedicine,
12, pp. 1227–1249. doi: 10.2147/IJN.S121956.
Warheit, D. B.,
Brock, W. J., Lee, K. P., Webb, T. R. and
Reed, K. L. (2005) ‘Comparative pulmonary toxicity inhalation
and instillation studies with different TiO2 particle formulations:
Impact of surface treatments on particle toxicity’, Toxicological
Sciences, 88(2), pp. 514–524. doi: 10.1093/toxsci/kfi331.
Weyermann, J., Lochmann, D. and
Zimmer, A. (2005) ‘A practical note on the use of cytotoxicity
assays’, International Journal of Pharmaceutics, 288(2),
pp. 369–376. doi: 10.1016/j.ijpharm.2004.09.018.
Williams, A. J. (1998) ‘ABC of
oxygen: Assessing and interpreting arterial blood gases and acid-base
balance’, BMJ, 317(7167), pp. 1213–1216. doi: 10.1136/bmj.317.7167.1213.
Xu, L., Wen, L., Ge, Y.,
Wan, G., Qu, M. and Xue, F. (2020) ‘Metagenomic insights
into the effects of rare-earth elements supplementation on rumen digestibility
and meat quality of beef cattle’, Frontiers in Microbiology, 11,
p. 1933. doi: 10.3389/fmicb.2020.01933.
Yacobi, N. R.,
Phuleria, H. C., Demaio, L., Liang, C. H.,
Peng, C.-A., Sioutas, C., Borok, Z., Kim, K.-J. and
Crandall, E. D. (2007) ‘Nanoparticle effects on rat alveolar
epithelial cell monolayer barrier properties’, Toxicology in Vitro,
21(8), pp. 1373–1381. doi: 10.1016/j.tiv.2007.04.003.
Yamakoshi, Y., Umezawa, N.,
Ryu, A., Arakane, K., Miyata, N., Goda, Y.,
Masumizu, T. and Nagano, T. (2003) ‘Active oxygen species
generated from photoexcited fullerene (C60) as potential medicines:
O2-• versus 1O2’, Journal
of the American Chemical Society, 125(42), pp. 12803–12809. doi:
10.1021/ja0355574.
Yefimova, S., Klochkov, V.,
Kavok, N., Tkachenko, A., Onishchenko, A., Chumachenko, T.,
Dizge, N., Özdemir, S., Gonca, S. and Ocakoglu, K.
(2023) ‘Antimicrobial activity and cytotoxicity study of cerium oxide
nanoparticles with two different sizes’, Journal of Biomedical
Materials Research Part B: Applied Biomaterials, 111(4),
pp. 872–880. doi: 10.1002/jbm.b.35197.
Zhang, Z., Berg, A.,
Levanon, H., Fessenden, R. W. and Meisel, D. (2003)
‘On the interactions of free radicals with gold nanoparticles’, Journal
of the American Chemical Society, 125(26), pp. 7959–7963. doi: 10.1021/ja034830z.
Zhu, J., Ji, Z., Wang, J.,
Sun, R., Zhang, X., Gao, Y., Sun, H., Liu, Y.,
Wang, Z., Li, A., Ma, J., Wang, T., Jia, G. and
Gu, Y. (2008) ‘Tumor-inhibitory effect and immunomodulatory activity
of fullerol C60(OH)x’, Small, 4(8),
pp. 1168–1175. doi: 10.1002/smll.200701219.
Zhu, L., Chang, D. W.,
Dai, L. and Hong, Y. (2007) ‘DNA damage induced by multiwalled
carbon nanotubes in mouse embryonic stem cells’, Nano Letters,
7(12), pp. 3592–3597. doi: 10.1021/nl071303v.
Zhu, M.-T., Feng, W.-Y.,
Wang, B., Wang, T.-C., Gu, Y.-Q., Wang, M., Wang, Y.,
Ouyang, H., Zhao, Y.-L. and Chai, Z.-F. (2008)
‘Comparative study of pulmonary responses to nano- and submicron-sized
ferric oxide in rats’, Toxicology, 247(2–3),
pp. 102–111. doi: 10.1016/j.tox.2008.02.011.