Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 9, Issue 1–2, June 2023, Pages 20–30

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

BIOLOGICAL PROPERTIES OF NANOMATERIALS (LITERATURE REVIEW)

Paliy A. P. 1, Kovalenko L. V. 1, Romanko M. Ye. 2, Stegniy M. Yu. 1, Kolchyk O. V. 1, Zavgorodniy A. I. 1, Kornieikov O. M. 1

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: paliy.dok@gmail.com

State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine

Download PDF (print version)

Citation for print version: Paliy, A. P., Kovalenko, L. V., Romanko, M. Ye., Stegniy, M. Yu., Kolchyk, O. V., Zavgorodniy, A. I., Kornieikov, O. M. (2023) ‘Biological properties of nanomaterials (literature review)’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 9(1–2), pp. 20–30.

Download PDF (online version)

Citation for online version: Paliy, A. P., Kovalenko, L. V., Romanko, M. Ye., Stegniy, M. Yu., Kolchyk, O. V., Zavgorodniy, A. I., Kornieikov, O. M. (2023) ‘Biological properties of nanomaterials (literature review)’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 9(1–2), pp. 20–30. DOI: 10.36016/JVMBBS-2023-9-1-2-4.

Summary. In the article reviewed and discussed literature data on biological properties of nanomaterials. The biosafety of nanomaterials is a complex and multifaceted issue that demands a comprehensive, science-based approach. Modern environmental and economic factors should be considered in this regard. The EU’s nanotechnology policy is based on ‘an integrated, safe and responsible approach’ (Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. Regulatory aspects of nanomaterials. SEC(2008) 2036 / COM(2008) 366 final). Based on the findings of toxicity and antimicrobial activity studies, metal nanoparticles appear to be a favorable choice as antibacterial agents in developing new disinfectants. However, further measures must be taken to ensure the safe and environmentally friendly use of metal nanoparticles (MeNPs). To achieve this, it is crucial to establish toxicity parameters for MeNPs of various compositions, sizes, and concentrations. These parameters must be compared and evaluated alongside the potential effects of MeNPs on laboratory and target animals (in vivo), as well as their antibacterial performance against microorganisms of different strains (in vitro). Thus, the investigation of possible hazards associated with the use of metal nanoparticles can be effectively achieved by analyzing the fundamental systemic characteristics of biological systems under both in vivo and in vitro conditions, taking into account various aspects such as physiological, biochemical, immunological, genetic and cytological responses that may be affected by toxic effects. The literary sources analysis and article publication were conducted under the National Research Foundation of Ukraine project No. 2021.01/0076 'Development of a novel, nanoparticle-based disinfectant for deactivation of pathogens causing emergent infectious diseases'

Keywords: metal nanoparticles, cytotoxicity, antimicrobial activity

References:

Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Noreldin, A. E., Arif, M., Chaudhry, M. T., Losacco, C., Abdeen, A. and Abdel-Daim, M. M. (2019) ‘Impacts of rare earth elements on animal health and production: Highlights of cerium and lanthanum’, Science of The Total Environment, 672, pp. 1021–1032. doi: 10.1016/j.scitotenv.2019.02.270.

Abraham, G. E., and Himmel, P. B. (1997) ‘Management of rheumatoid arthritis: Rationale for the use of colloidal metallic gold’, Journal of Nutritional & Environmental Medicine, 7(4), pp. 295–305. doi: 10.1080/13590849762411.

Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., Domann, E. and Schnettler, R. (2004) ‘An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement’, Biomaterials, 25(18), pp. 4383–4391. doi: 10.1016/j.biomaterials.2003.10.078.

Amaro, F., Morón, Á., Díaz, S., Martín-González, A. and Gutiérrez, J. C. (2021) ‘Metallic nanoparticles — friends or foes in the battle against antibiotic-resistant bacteria?’, Microorganisms, 9(2), p. 364. doi: 10.3390/microorganisms9020364.

Anzai, Y., Piccoli, C. W., Outwater, E. K., Stanford, W., Bluemke, D. A., Nurenberg, P., Saini, S., Maravilla, K. R., Feldman, D. E., Schmiedl, U. P., Brunberg, J. A., Francis, I. R., Harms, S. E., Som, P. M. and Tempany, C. M. (2003) ‘Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: Phase III safety and efficacy study’, Radiology, 228(3), pp. 777–788. doi: 10.1148/radiol.2283020872.

Banerji, S. K. and Hayes, M. A. (2007) ‘Examination of nonendocytotic bulk transport of nanoparticles across phospholipid membranes’, Langmuir, 23(6), pp. 3305–3313. doi: 10.1021/la0622875.

Bawa, R. (2008). ‘Nanoparticle-based therapeutics in humans: A survey’, Nanotechnology Law & Business, 5(2), pp. 135–155. Available at: https://www.researchgate.net/publication/282677427_Nanoparticle-based_therapeutics_in_humans_A_survey.

Bermudez, E., Mangum, J. B., Asgharian, B., Wong, B. A., Reverdy, E. E., Janszen, D. B., Hext, P. M., Warheit, D. B., and Everitt, J. I. (2002) ‘Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles’, Toxicological Sciences, 70(1), pp. 86–97. doi: 10.1093/toxsci/70.1.86.

Bermudez, E., Mangum, J. B., Wong, B. A., Asgharian, B., Hext, P. M., Warheit, D. B. and Everitt, J. I. (2004) ‘Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles’, Toxicological Sciences, 77(2), pp. 347–357. doi: 10.1093/toxsci/kfh019.

Bishayee, A., Oinam, S., Basu, M. and Chatterjee, M. (2000) ‘Vanadium chemoprevention of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis: probable involvement of representative hepatic phase I and II xenobiotic metabolizing enzymes’, Breast Cancer Research and Treatment, 63(2), pp. 133–145. doi: 10.1023/A:1006476003685.

Braydich-Stolle, L., Hussain, S., Schlager, J. J. and Hofmann, M.-C. (2005) ‘In vitro cytotoxicity of nanoparticles in mammalian germline stem cells’, Toxicological Sciences, 88(2), pp. 412–419. doi: 10.1093/toxsci/kfi256.

Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A. and Stark, W. J. (2006) ‘In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility’, Environmental Science & Technology, 40(14), pp. 4374–4381. doi: 10.1021/es052069i.

Cai, L., Park, Y. S., Seong, S. I., Yoo, S. W. and Kim, I. H. (2015) ‘Effects of rare earth elements-enriched yeast on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broiler chickens’, Livestock Science, 172, pp. 43–49. doi: 10.1016/j.livsci.2014.11.013.

CEC (The Commission of the European Communities) (2008) Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. Regulatory Aspects of Nanomaterials. SEC(2008) 2036/ COM(2008) 366 final. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52008DC0366.

Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B. and Wan, L. (2006) ‘Acute toxicological effects of copper nanoparticles in vivo’, Toxicology Letters, 163(2), pp. 109–120. doi: 10.1016/j.toxlet.2005.10.003.

Colon, J., Herrera, L., Smith, J., Patil, S., Komanski, C., Kupelian, P., Seal, S., Jenkins, D. W. and Baker, C. H. (2009) ‘Protection from radiation-induced pneumonitis using cerium oxide nanoparticles’, Nanomedicine: Nanotechnology, Biology and Medicine, 5(2), pp. 225–231. doi: 10.1016/j.nano.2008.10.003.

Dahiya, J. P., Hoehler, D., Van Kessel, A. G. and Drew, M. D. (2007) ‘Effect of different dietary methionine sources on intestinal microbial populations in broiler chickens’, Poultry Science, 86(11), pp. 2358–2366. doi: 10.3382/ps.2007-00133.

Di Meo, S. and Venditti, P. (2020) ‘Evolution of the knowledge of free radicals and other oxidants’, Oxidative Medicine and Cellular Longevity, 2020, pp. 1–32. doi: 10.1155/2020/9829176.

Dimova, M., Tugai, A., Tugai, T., Iutynska, G., Dordevic, D. and Kushkevych, I. (2022) ‘Molecular research of lipid peroxidation and antioxidant enzyme activity of Comamonas testosteroni bacterial cells under the hexachlorobenzene impact’, International Journal of Molecular Sciences, 23(19), p. 11415. doi: 10.3390/ijms231911415.

Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G. and Alexander, A. (2006) ‘Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety’, Toxicological Sciences, 92(1), pp. 5–22. doi: 10.1093/toxsci/kfj130.

Donaldson, K., Stone, V., Borm, P. J. A., Jimenez, L. A., Gilmour, P. S., Schins, R. P. F., Knaapen, A. M., Rahman, I., Faux, S. P., Brown, D. M. and MacNee, W. (2003) ‘Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10)’, Free Radical Biology and Medicine, 34(11), pp. 1369–1382. doi: 10.1016/S0891-5849(03)00150-3.

Donaldson, K., Stone, V., Tran, C. L., Kreyling, W., and Borm, P. J. (2004) ‘Nanotoxicology’, Occupational and Environmental Medicine, 61(9), pp. 727–728. doi: 10.1136/oem.2004.013243.

Dong, Y., Zhu, H., Shen, Y., Zhang, W. and Zhang, L. (2019) ‘Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens’, PLoS One, 14(9), p. e0222322. doi: 10.1371/journal.pone.0222322.

El-Ansary, A. and Al-Daihan, S. (2009) ‘On the toxicity of therapeutically used nanoparticles: An overview’, Journal of Toxicology, 2009, pp. 1–9. doi: 10.1155/2009/754810.

Fan, M. Z., Adeola, O., Asem, E. K. and King, D. (2002) ‘Postnatal ontogeny of kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities’, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132(3), pp. 599–607. doi: 10.1016/S1095-6433(02)00102-2.

Farias, I. A. P., Santos, C. C. L. D. and Sampaio, F. C. (2018) ‘Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: A systematic review’, BioMed Research International, 2018, pp. 1–14. doi: 10.1155/2018/1923606.

Flachowski, G. (2003). ‘Huhn und Schwein und seltene Erden’, Wirtschaft Erleben, 1, pp. 6–7.

Francik, R., Krośniak, M., Barlik, M., Kudła, A., Gryboś, R. and Librowski, T. (2011) ‘Impact of vanadium complexes treatment on the oxidative stress factors in wistar rats plasma’, Bioinorganic Chemistry and Applications, 2011, pp. 1–8. doi: 10.1155/2011/206316.

Friedman, N., Dagan, A., Elia, J., Merims, S. and Benny, O. (2021) ‘Physical properties of gold nanoparticles affect skin penetration via hair follicles’, Nanomedicine: Nanotechnology, Biology and Medicine, 36, p. 102414. doi: 10.1016/j.nano.2021.102414.

Galla, J. H. (2000) ‘Metabolic Alkalosis’, Journal of the American Society of Nephrology, 11(2), pp. 369–375. doi: 10.1681/ASN.V112369.

Gao, W., and Zhang, L. (2021) ‘Nanomaterials arising amid antibiotic resistance’, Nature Reviews Microbiology, 19(1), pp. 5–6. doi: 10.1038/s41579-020-00469-5.

Garçon, G., Dagher, Z., Zerimech, F., Ledoux, F., Courcot, D., Aboukais, A., Puskaric, E. and Shirali, P. (2006) ‘Dunkerque City air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture’, Toxicology in Vitro, 20(4), pp. 519–528. doi: 10.1016/j.tiv.2005.09.012.

Gharbi, N., Pressac, M., Hadchouel, M., Szwarc, H., Wilson, S. R. and Moussa, F. (2005) ‘[60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity’, Nano Letters, 5(12), pp. 2578–2585. doi: 10.1021/nl051866b.

Ghosh, S., Roy, P., Karmodak, N., Jemmis, E. D. and Mugesh, G. (2018) ‘Nanoisozymes: Crystalfacetdependent enzymemimetic activity of V2O5 nanomaterials’, Angewandte Chemie International Edition, 57(17), pp. 4510–4515. doi: 10.1002/anie.201800681.

Gonca, S., Yefimova, S., Dizge, N., Tkachenko, A., Özdemir, S., Prokopiuk, V., Klochkov, V., Kavok, N., Onishchenko, A., Maksimchuk, P., Butov, D. and Ocakoglu, K. (2022) ‘Antimicrobial effects of nanostructured rare-earth-based orthovanadates’, Current Microbiology, 79(9), p. 254. doi: 10.1007/5s00284-022-02947-w.

Guéraud, F., Atalay, M., Bresgen, N., Cipak, A., Eckl, P. M., Huc, L., Jouanin, I., Siems, W. and Uchida, K. (2010) ‘Chemistry and biochemistry of lipid peroxidation products’, Free Radical Research, 44(10), pp. 1098–1124. doi: 10.3109/10715762.2010.498477.

Harati, M., M. and Ani, M., M. (2006) ‘Low doses of vanadyl sulfate protect rats from lipid peroxidation and hypertriglyceridemic effects of fructose-enriched diet’, International Journal of Diabetes and Metabolism, 14(3), pp. 134–137. doi: 10.1159/000497605.

He, M. L., Wehr, U. and Rambeck, W. A. (2010) ‘Effect of low doses of dietary rare earth elements on growth performance of broilers’, Journal of Animal Physiology and Animal Nutrition, 94(1), pp. 86–92. doi: 10.1111/j.1439-0396.2008.00884.x.

Hitchler, M. J. and Domann, F. E. (2021) ‘The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development’, Free Radical Biology and Medicine, 170, pp. 70–84. doi: 10.1016/j.freeradbiomed.2021.01.008.

Hoet, P. H., Brüske-Hohlfeld, I. and Salata, O. V. (2004) ‘Nanoparticles — known and unknown health risks’, Journal of Nanobiotechnology, 2(1), p. 12. doi: 10.1186/1477-3155-2-12.

Hosseini, M.-J., Shaki, F., Ghazi-Khansari, M. and Pourahmad, J. (2013) ‘Toxicity of vanadium on isolated rat liver mitochondria: A new mechanistic approach’, Metallomics, 5(2), p. 152. doi: 10.1039/c2mt20198d.

Hussain, N. (2001) ‘Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics’, Advanced Drug Delivery Reviews, 50(1–2), pp. 107–142. doi: 10.1016/S0169-409X(01)00152-1.

Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. and Schlager, J. J. (2005) ‘In vitro toxicity of nanoparticles in BRL 3A rat liver cells’, Toxicology in Vitro, 19(7), pp. 975–983. doi: 10.1016/j.tiv.2005.06.034.

Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y. and Guo, X. (2005) ‘Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene’, Environmental Science & Technology, 39(5), pp. 1378–1383. doi: 10.1021/es048729l.

Jia, H. Y., Liu, Y., Zhang, X. J., Han, L., Du, L. B., Tian, Q. and Xu, Y. C. (2009) ‘Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum’, Journal of the American Chemical Society, 131(1), pp. 40–41. doi: 10.1021/ja808033w.

Jurisic, V. and Bumbasirevic, V. (2008) ‘In vitro assays for cell death determination’, Archive of Oncology, 16(3–4), pp. 49–54. doi: 10.2298/AOO0804049J.

Kagan, V. E., Bayir, H. and Shvedova, A. A. (2005) ‘Nanomedicine and nanotoxicology: Two sides of the same coin’, Nanomedicine: Nanotechnology, Biology and Medicine, 1(4), pp. 313–316. doi: 10.1016/j.nano.2005.10.003.

Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C.-Y., Kim, Y.-K., Lee, Y.-S., Jeong, D. H. and Cho, M.-H. (2007) ‘Antimicrobial effects of silver nanoparticles’, Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), pp. 95–101. doi: 10.1016/j.nano.2006.12.001.

Kipen, H. M. and Laskin, D. L. (2005) ‘Smaller is not always better: nanotechnology yields nanotoxicology’, American Journal of Physiology-Lung Cellular and Molecular Physiology, 289(5), pp. L696–L697. doi: 10.1152/ajplung.00277.2005.

Klingelhöfer, D., Braun, M., Dröge, J., Fischer, A., Brüggmann, D. and Groneberg, D. A. (2022) ‘Environmental and health-related research on application and production of rare earth elements under scrutiny’, Globalization and Health, 18(1), p. 86. doi: 10.1186/s12992-022-00879-5.

Koshevoy, V. I., Naumenko, S. V., Klochkov, V. K. and Yefimova, S. L. (2021) ‘The peculiarities of hormonal background in boars under correction of reproductive capacity by gadolinium orthovanadate nanoparticles’, Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(104), pp. 66–70. doi: 10.32718/nvlvet10411.

Lam, C.-W. (2003) ‘Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation’, Toxicological Sciences, 77(1), pp. 126–134. doi: 10.1093/toxsci/kfg243.

Landers, T. F., Cohen, B., Wittum, T. E. and Larson, E. L. (2012) ‘A review of antibiotic use in food animals: Perspective, policy, and potential’, Public Health Reports, 127(1), pp. 4–22. doi: 10.1177/003335491212700103.

Landry, R., Jacobs, P. M., Davis, R., Shenouda, M. and Bolton, W. K. (2005) ‘Pharmacokinetic study of ferumoxytol: A new iron replacement therapy in normal subjects and hemodialysis patients’, American Journal of Nephrology, 25(4), pp. 400–410. doi: 10.1159/000087212.

Lee, N.-Y., Ko, W.-C. and Hsueh, P.-R. (2019) ‘Nanoparticles in the treatment of infections caused by multidrug-resistant organisms’, Frontiers in Pharmacology, 10, p. 1153. doi: 10.3389/fphar.2019.01153.

Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H. and He, Q. (2019) ‘The antimicrobial peptides and their potential clinical applications’, American Journal of Translational Research, 11(7), pp. 3919–3931. PMID: 31396309.

Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T. and Jiang, G. (2009) ‘Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology’, Ecotoxicology and Environmental Safety, 72(3), pp. 684–692. doi: 10.1016/j.ecoenv.2008.09.027.

Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M., Oberley, T., Froines, J. and Nel, A. (2003) ‘Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage’, Environmental Health Perspectives, 111(4), pp. 455–460. doi: 10.1289/ehp.6000.

Li, S., Tan, H.-Y., Wang, N., Zhang, Z.-J., Lao, L., Wong, C.-W. and Feng, Y. (2015) ‘The role of oxidative stress and antioxidants in liver diseases’, International Journal of Molecular Sciences, 16(11), pp. 26087–26124. doi: 10.3390/ijms161125942.

Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., Tam, P. K.-H., Chiu, J.-F. and Che, C.-M. (2007) ‘Silver nanoparticles: Partial oxidation and antibacterial activities’, JBIC Journal of Biological Inorganic Chemistry, 12(4), pp. 527–534. doi: 10.1007/s00775-007-0208-z.

Lu, X., Zhu, T., Chen, C. and Liu, Y. (2014) ‘Right or left: The role of nanoparticles in pulmonary diseases’, International Journal of Molecular Sciences, 15(10), pp. 17577–17600. doi: 10.3390/ijms151017577.

Lynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S. and Dawson, K. A. (2007) ‘The nanoparticle–protein complex as a biological entity; A complex fluids and surface science challenge for the 21st century’, Advances in Colloid and Interface Science, 134–135, pp. 167–174. doi: 10.1016/j.cis.2007.04.021.

Maksimchuk, P. O., Hubenko, K. O., Seminko, V. V., Karbivskii, V. L., Tkachenko, A. S., Onishchenko, A. I., Prokopyuk, V. Y. and Yefimova, S. L. (2022) ‘High antioxidant activity of gadolinium–yttrium orthovanadate nanoparticles in cell-free and biological milieu’, Nanotechnology, 33(5), p. 055701. doi: 10.1088/1361-6528/ac31e5.

Manyi-Loh, C., Mamphweli, S., Meyer, E. and Okoh, A. (2018) ‘Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications’, Molecules, 23(4), p. 795. doi: 10.3390/molecules23040795.

McNeilly, O., Mann, R., Hamidian, M. and Gunawan, C. (2021) ‘Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria’, Frontiers in Microbiology, 12, p. 652863. doi: 10.3389/fmicb.2021.652863.

Meng, H., Chen, Z., Xing, G., Yuan, H., Chen, C., Zhao, F., Zhang, C. and Zhao, Y. (2007) ‘Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles’, Toxicology Letters, 175(1–3), pp. 102–110. doi: 10.1016/j.toxlet.2007.09.015.

Moghimi, S. M., Hunter, A. C. and Murray, J. C. (2001) ‘Long-circulating and target-specific nanoparticles: Theory to practice’, Pharmacological Reviews, 53(2), pp. 283–318. PMID: 11356986.

Müller, R. H. and Keck, C. M. (2004) ‘Drug delivery to the brain — realization by novel drug carriers’, Journal of Nanoscience and Nanotechnology, 4(5), pp. 471–483. doi: 10.1166/jnn.2004.078.

Nemmar, A., Hoylaerts, M. F., Hoet, P. H. M., Dinsdale, D., Smith, T., Xu, H., Vermylen, J. and Nemery, B. (2002) ‘Ultrafine particles affect experimental thrombosis in an in vivo hamster model’, American Journal of Respiratory and Critical Care Medicine, 166(7), pp. 998–1004. doi: 10.1164/rccm.200110-026OC.

Niño-Martínez, N., Salas Orozco, M. F., Martínez-Castañón, G.-A., Torres Méndez, F. and Ruiz, F. (2019) ‘Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles’, International Journal of Molecular Sciences, 20(11), p. 2808. doi: 10.3390/ijms20112808.

Oberdörster, G., Oberdörster, E. and Oberdörster, J. (2005) ‘Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles’, Environmental Health Perspectives, 113(7), pp. 823–839. doi: 10.1289/ehp.7339.

Oberdörster, G. (2000) ‘Pulmonary effects of inhaled ultrafine particles’, International Archives of Occupational and Environmental Health, 74(1), pp. 1–8. doi: 10.1007/s004200000185.

Ou, X., Guo, Z. and Wang, J. (2000) ‘The effects of rare earth element additive in feed on piglets’, Livestock Poultry Industry, 4, pp. 194–198.

Pakulova, O. K., Klochkov, V. K., Kavok, N. S., Kostina, I. A., Sopotova, A. S. and Bondarenko, V. A. (2017) ‘Effect of rare-earth-based nanoparticles on the erythrocyte osmotic adaptation’ [Vliyanie nanochastits na osnove redkozemel’nykh elementov na osmoticheskuyu adaptatsiyu eritrotsitov], Biophysical Bulletin [Biofizychnyi visnyk], 37(1), pp. 42–50. doi: 10.26565/2075-3810-2017-37-05. [in Russian].

Paliy, A. P., Zavgorodnii, A. I., Kalashnyk, M. V., Shkromada, O. I., Rybachuk, Z. V., Dolbanosova, R. V., Kovalenko, L. M., Livoshchenko, Ye. M., Livoshchenko, L. P., Baidevliatova, Yu. V., Dunaiev, Yu. K., Palii, A. P., and Nedzheria, T. I. (2020) ‘Influence of new frost-resistant disinfectant on the ultrastructural organization of atypical mycobacteria’, Ukrainian Journal of Ecology, 10(3), pp. 95–101. Available at: https://www.ujecology.com/abstract/influence-of-new-frostresistant-disinfectant-on-the-ultrastructural-organization-of-atypical-mycobacteria-55136.html.

Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., Dyčka, F., Šebela, M., Prucek, R., Tomanec, O. and Zbořil, R. (2018) ‘Bacterial resistance to silver nanoparticles and how to overcome it’, Nature Nanotechnology, 13(1), pp. 65–71. doi: 10.1038/s41565-017-0013-y.

Peters, K., Unger, R. E., Kirkpatrick, C. J., Gatti, A. M. and Monari, E. (2004) ‘Effects of nano-scaled particles on endothelial cell function in vitro: Studies on viability, proliferation and inflammation’, Journal of Materials Science: Materials in Medicine, 15(4), pp. 321–325. doi: 10.1023/B:JMSM.0000021095.36878.1b.

Piewngam, P., Chiou, J., Chatterjee, P. and Otto, M. (2020) ‘Alternative approaches to treat bacterial infections: targeting quorum-sensing’, Expert Review of Anti-Infective Therapy, 18(6), pp. 499–510. doi: 10.1080/14787210.2020.1750951.

Pomatto, L. C. D. and Davies, K. J. A. (2018) ‘Adaptive homeostasis and the free radical theory of ageing’, Free Radical Biology and Medicine, 124, pp. 420–430. doi: 10.1016/j.freeradbiomed.2018.06.016.

Pop, O. L., Mesaros, A., Vodnar, D. C., Suharoschi, R., Tăbăran, F., Magerușan, L., Tódor, I. Sz., Diaconeasa, Z., Balint, A., Ciontea, L. and Socaciu, C. (2020) ‘Cerium oxide nanoparticles and their efficient antibacterial application in vitro against Gram-positive and Gram-negative pathogens’, Nanomaterials, 10(8), p. 1614. doi: 10.3390/nano10081614.

Prokopiuk, V., Yefimova, S., Onishchenko, A., Kapustnik, V., Myasoedov, V., Maksimchuk, P., Butov, D., Bespalova, I. and Tkachenko, A. (2023) ‘Assessing the cytotoxicity of TiO2−x nanoparticles with a different Ti3+(Ti2+)/Ti4+ ratio’, Biological Trace Element Research, 201(6), pp. 3117–3130. doi: 10.1007/s12011-022-03403-3.

Raju, G., Katiyar, N., Vadukumpully, S. and Shankarappa, S. A. (2018) ‘Penetration of gold nanoparticles across the stratum corneum layer of thick-skin’, Journal of Dermatological Science, 89(2), pp. 146–154. doi: 10.1016/j.jdermsci.2017.11.001.

Rodionova, K., Кhimych, M. and Paliy, A. (2021) ‘Veterinary and sanitary assessment and disinfection of refrigerator chambers of meat processing enterprises’, Potravinarstvo Slovak Journal of Food Sciences, 15, pp. 616–626. doi: 10.5219/1628.

Romanko, M., Orobchenko, O., Ushkalov, V., Paliy, A., Palii, A. and Chechui, H. (2023) ‘Evaluation of biochemical markers in the blood plasma of rats exposed to chronic administration of a mixture of metal nanoparticles’, Veterinarska Stanica, 54(1), pp. 69–85. doi: 10.46419/vs.54.1.10.

Romero-Calle, D., Guimarães Benevides, R., Góes-Neto, A. and Billington, C. (2019) ‘Bacteriophages as alternatives to antibiotics in clinical care’, Antibiotics, 8(3), p. 138. doi: 10.3390/antibiotics8030138.

Sahoo, S. K., Parveen, S. and Panda, J. J. (2007) ‘The present and future of nanotechnology in human health care’, Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), pp. 20–31. doi: 10.1016/j.nano.2006.11.008.

Samrot, A. V., Ram Singh, S. P., Deenadhayalan, R., Rajesh, V. V., Padmanaban, S. and Radhakrishnan, K. (2022) ‘Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties — A review’, Oxygen, 2(4), pp. 591–604. doi: 10.3390/oxygen2040039.

Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L. and Souto, E. B. (2020) ‘Metal-based nanoparticles as antimicrobial agents: An overview’, Nanomaterials, 10(2), p. 292. doi: 10.3390/nano10020292.

Santamaria, A. (2012) ‘Historical overview of nanotechnology and nanotoxicology’, in Reineke, J. (ed.) Nanotoxicity. Methods in Molecular Biology, 926. Totowa, NJ: Humana Press, pp. 1–12. doi: 10.1007/978-1-62703-002-1_1.

Scheringer, M. (2008) ‘Environmental risks of nanomaterials’, Nature Nanotechnology, 3(6), pp. 322–323. doi: 10.1038/nnano.2008.145.

Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C. and Sharifi-Rad, J. (2020) ‘Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases’, Frontiers in Physiology, 11, p. 694. doi: 10.3389/fphys.2020.00694.

Slavin, Y. N., Asnis, J., Häfeli, U. O. and Bach, H. (2017) ‘Metal nanoparticles: Understanding the mechanisms behind antibacterial activity’, Journal of Nanobiotechnology, 15(1), p. 65. doi: 10.1186/s12951-017-0308-z.

Smith, D. K. and Korgel, B. A. (2008) ‘The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods’, Langmuir, 24(3), pp. 644–649. doi: 10.1021/la703625a.

Szewczyk, O. K., Roszczenko, P., Czarnomysy, R., Bielawska, A. and Bielawski, K. (2022) ‘An overview of the importance of transition-metal nanoparticles in cancer research’, International Journal of Molecular Sciences, 23(12), p. 6688. doi: 10.3390/ijms23126688.

Tao, T. Y., Liu, F., Klomp, L., Wijmenga, C. and Gitlin, J. D. (2003) ‘The copper toxicosis gene product MURR1 directly interacts with the Wilson disease protein’, Journal of Biological Chemistry, 278(43), pp. 41593–41596. doi: 10.1074/jbc.C300391200.

Tariq, H., Sharma, A., Sarkar, S., Ojha, L., Pal, R. P. and Mani, V. (2020) ‘Perspectives for rare earth elements as feed additive in livestock — A review’, Asian-Australasian Journal of Animal Sciences, 33(3), pp. 373–381. doi: 10.5713/ajas.19.0242.

Thaxton, C. S., Georganopoulou, D. G. and Mirkin, C. A. (2006) ‘Gold nanoparticle probes for the detection of nucleic acid targets’, Clinica Chimica Acta, 363(1–2), pp. 120–126. doi: 10.1016/j.cccn.2005.05.042.

Tommasi, F., Thomas, P. J., Pagano, G., Perono, G. A., Oral, R., Lyons, D. M., Toscanesi, M. and Trifuoggi, M. (2021) ‘Review of rare earth elements as fertilizers and feed additives: A knowledge gap analysis’, Archives of Environmental Contamination and Toxicology, 81(4), pp. 531–540. doi: 10.1007/s00244-020-00773-4.

Vernekar, A. A., Sinha, D., Srivastava, S., Paramasivam, P. U., D’Silva, P. and Mugesh, G. (2014) ‘An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires’, Nature Communications, 5(1), p. 5301. doi: 10.1038/ncomms6301.

Vimbela, G., Ngo, S. M., Fraze, C., Yang, L. and Stout, D. A. (2017) ‘Antibacterial properties and toxicity from metallic nanomaterials’, International Journal of Nanomedicine, 12, pp. 3941–3965. doi: 10.2147/IJN.S134526.

Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B. and Sun, J. (2007) ‘Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration’, Toxicology Letters, 168(2), pp. 176–185. doi: 10.1016/j.toxlet.2006.12.001.

Wang, L., Hu, C. and Shao, L. (2017) ‘The antimicrobial activity of nanoparticles: Present situation and prospects for the future’, International Journal of Nanomedicine, 12, pp. 1227–1249. doi: 10.2147/IJN.S121956.

Warheit, D. B., Brock, W. J., Lee, K. P., Webb, T. R. and Reed, K. L. (2005) ‘Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: Impact of surface treatments on particle toxicity’, Toxicological Sciences, 88(2), pp. 514–524. doi: 10.1093/toxsci/kfi331.

Weyermann, J., Lochmann, D. and Zimmer, A. (2005) ‘A practical note on the use of cytotoxicity assays’, International Journal of Pharmaceutics, 288(2), pp. 369–376. doi: 10.1016/j.ijpharm.2004.09.018.

Williams, A. J. (1998) ‘ABC of oxygen: Assessing and interpreting arterial blood gases and acid-base balance’, BMJ, 317(7167), pp. 1213–1216. doi: 10.1136/bmj.317.7167.1213.

Xu, L., Wen, L., Ge, Y., Wan, G., Qu, M. and Xue, F. (2020) ‘Metagenomic insights into the effects of rare-earth elements supplementation on rumen digestibility and meat quality of beef cattle’, Frontiers in Microbiology, 11, p. 1933. doi: 10.3389/fmicb.2020.01933.

Yacobi, N. R., Phuleria, H. C., Demaio, L., Liang, C. H., Peng, C.-A., Sioutas, C., Borok, Z., Kim, K.-J. and Crandall, E. D. (2007) ‘Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties’, Toxicology in Vitro, 21(8), pp. 1373–1381. doi: 10.1016/j.tiv.2007.04.003.

Yamakoshi, Y., Umezawa, N., Ryu, A., Arakane, K., Miyata, N., Goda, Y., Masumizu, T. and Nagano, T. (2003) ‘Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-• versus 1O2’, Journal of the American Chemical Society, 125(42), pp. 12803–12809. doi: 10.1021/ja0355574.

Yefimova, S., Klochkov, V., Kavok, N., Tkachenko, A., Onishchenko, A., Chumachenko, T., Dizge, N., Özdemir, S., Gonca, S. and Ocakoglu, K. (2023) ‘Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes’, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111(4), pp. 872–880. doi: 10.1002/jbm.b.35197.

Zhang, Z., Berg, A., Levanon, H., Fessenden, R. W. and Meisel, D. (2003) ‘On the interactions of free radicals with gold nanoparticles’, Journal of the American Chemical Society, 125(26), pp. 7959–7963. doi: 10.1021/ja034830z.

Zhu, J., Ji, Z., Wang, J., Sun, R., Zhang, X., Gao, Y., Sun, H., Liu, Y., Wang, Z., Li, A., Ma, J., Wang, T., Jia, G. and Gu, Y. (2008) ‘Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x’, Small, 4(8), pp. 1168–1175. doi: 10.1002/smll.200701219.

Zhu, L., Chang, D. W., Dai, L. and Hong, Y. (2007) ‘DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells’, Nano Letters, 7(12), pp. 3592–3597. doi: 10.1021/nl071303v.

Zhu, M.-T., Feng, W.-Y., Wang, B., Wang, T.-C., Gu, Y.-Q., Wang, M., Wang, Y., Ouyang, H., Zhao, Y.-L. and Chai, Z.-F. (2008) ‘Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats’, Toxicology, 247(2–3), pp. 102–111. doi: 10.1016/j.tox.2008.02.011.