Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 9, Issue 3, September 2023, Pages 18–22

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

DEVELOPMENT OF IN-HOUSE DIAGNOSTIC TOOL FOR THE DETECTION OF ANTHRAX GENETIC MATERIAL IN REAL-TIME PCR

Biloivan O. V. 1, Popp C. 2, Schwarz J. 2

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: silverscreen91@gmail.com

2 Bundeswehr Institute of Microbiology, Munich, Germany

Download PDF (print version)

Citation for print version: Biloivan, O. V., Popp, C., Schwarz, J. (2023) ‘Development of in-house diagnostic tool for the detection of Anthrax genetic material in real-time PCR’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 9(3), pp. 18–22.

Download PDF (online version)

Citation for online version: Biloivan, O. V., Popp, C., Schwarz, J. (2023) ‘Development of in-house diagnostic tool for the detection of Anthrax genetic material in real-time PCR’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 9(3), pp. 18–22. DOI: 10.36016/JVMBBS-2023-9-3-4.

Summary. This paper represents preliminary trials of the ‘Anthrax-DNA-test’, diagnostical tool for the detection of anthrax DNA. It includes recombinant positive controls p-pagA-TZ57R/T and p-capC-TZ57R/T for the detection of anthrax plasmid markers, as well as p-dhp61-CR2.1-TOPO, positive control for the detection of Bacillus anthracis chromosomal marker. Besides, three mixtures of primers and probes for the detection of each genetic marker (dhp61, pagA, and capC) and ready-to-use ‘RT-PCR МаsterМіx’ PCR diluent were also included. Concentrations of MgCl2 and Taq-polymerase obtained during qPCR validation procedure were considered when preparing the diluent. To determine specificity, qPCR was conducted with heterological panel of DNA of pathogenic bacteria and viruses causing diseases with similar to anthrax clinical signs. To determine repeatability of the results when using ‘Anthrax-DNA-test’ PCR test kit, samples were studied twice. The sensibility of the kit was analyzed by serial dilutions of p-dhp61-CR2.1-TOPO, p-pagA-TZ57R/T and p-capC-TZ57R/T plasmid DNAs containing fragments of anthrax chromosome and plasmids. To compare the tool’s ability to identify anthrax DNA, classical PCR was carried out using ANT-PA_F/R and ANT-CAP_F/R primers recommended by OIE for the detection of pXO1 and pXO2 plasmid DNA. Sensitivity testing has shown that the test kit is able to identify all positive samples. It has been found that the diagnostics tool detects anthrax DNA in recombinant positive control samples containing B. anthracis chromosomal and plasmid DNA fragments in serial dilutions from 1:100 to 1:1,000 with Ct values of 25.29–34.70. The specificity of this diagnostic tool is proved by the absence of Ct in heterological samples. Besides, repeatability of trial results has been found, which is proved by complete congruence in duplicates with each of the tested sample

Keywords: Bacillus anthracis, plasmid, validation

References:

Antwerpen, M. H., Zimmermann, P., Bewley, K., Frangoulidis, D. and Meyer, H. (2008) ‘Real-time PCR system targeting a chromosomal marker specific for Bacillus anthracis’, Molecular and Cellular Probes, 22(5–6), pp. 313–315. doi: 10.1016/j.mcp.2008.06.001.

Beloyvan, A. V., Stegniy, B. T., Gerilovych, A. P., Solodiankin, A. S., Duerr, A., Schwarz, J. (2019) ‘Detection of specific marker CAPC of the Bacillus anthracis pXO2 plasmid via real-time PCR method’ [Detekciya specificheskogo markera CAPC plazmidy pXO2 Bacillus anthracis s pomoshchu metoda PTsR v realnom vremeni], Epizootology. Immunobiology. Pharmacology. Sanitary [Epizootologiya. Immunobiologiya. Farmakologiya. Sanitariya], 1, pp. 54–62. Available at: https://www.elibrary.ru/item.asp?id=38585181. [in Russian].

Beyer, W., Glöckner, P., Otto, J. and Böhm, R. (1995) ‘A nested PCR method for the detection of Bacillus anthracis in environmental samples collected from former tannery sites’, Microbiological Research, 150(2), pp. 179–186. doi: 10.1016/S0944-5013(11)80054-6.

Biloivan, O. V., Stegniy, B. T., Gerilovych, A. P., Solodiankin, O. S., Popp, C. and Schwarz, J. (2019) ‘Validation of Anthrax specific pagA quantitative PCR for detection of Bacillus anthracis pXO1 plasmid’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 5(2), pp. 15–21. doi: 10.36016/JVMBBS-2019-5-2-3.

Biloivan, O. V., Stegniy, B. T., Solodiankin, O. S. and Gerilovych, A. P. (2018) ‘Development of positive control assays for the detection of Bacillus anthracis plasmids pXO1 and pXO2 via PCR’ [Rozrobka pozytyvnykh PLR-kontroliv dlia vyiavlennia plazmid Bacillus anthracis pXO1 ta pXO2], Veterinary Biotechnology [Veterynarna biotekhnolohiia], 32(1), pp. 44–49. doi: 10.31073/vet_biotech32(1)-3. [in Ukrainian].

Helgason, E., Caugant, D. A., Olsen, I. and Kolstø, A.-B. (2000) ‘Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections’, Journal of Clinical Microbiology, 38(4), pp. 1615–1622. doi: 10.1128/JCM.38.4.1615-1622.2000.

Hoffmaster, A. R., Fitzgerald, C. C., Ribot, E., Mayer, L. W. and Popovic, T. (2002) ‘Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States’, Emerging Infectious Diseases, 8(10), pp. 1111–1116. doi: 10.3201/eid0810.020394.

Hurtle, W., Bode, E., Kulesh, D. A., Kaplan, R. S., Garrison, J., Bridge, D., House, M., Frye, M. S., Loveless, B. and Norwood, D. (2004) ‘Detection of the Bacillus anthracis gyrA gene by using a minor groove binder probe’, Journal of Clinical Microbiology, 42(1), pp. 179–185. doi: 10.1128/JCM.42.1.179-185.2004.

Hutson, R. A., Duggleby, C. J., Lowe, J. R., Manchee, R. J. and Turnbull, P. C. B. (1993) ‘The development and assessment of DNA and oligonucleotide probes for the specific detection of Bacillus anthracis’, Journal of Applied Bacteriology, 75(5), pp. 463–472. doi: 10.1111/j.1365-2672.1993.tb02803.x.

Janzen, T. W., Thomas, M. C., Goji, N., Shields, M. J., Hahn, K. R. and Amoako, K. K. (2015) ‘Rapid detection method for Bacillus anthracis using a combination of multiplexed real-time PCR and pyrosequencing and its application for food biodefense’, Journal of Food Protection, 78(2), pp. 355–361. doi: 10.4315/0362-028X.JFP-14-216.

Keim, P., Van Ert, M. N., Pearson, T., Vogler, A. J., Huynh, L. Y. and Wagner, D. M. (2004) ‘Anthrax molecular epidemiology and forensics: Using the appropriate marker for different evolutionary scales’, Infection, Genetics and Evolution, 4(3), pp. 205–213. doi: 10.1016/j.meegid.2004.02.005.

Martin, J. W., Christopher, G. W. and Eitzen, E. M. (2007) ‘Chapter 1. History of biological weapons: from poisoned darts to intentional epidemics’, in Dembek Z. F. (ed.) Medical Aspects of Chemical and Biological Warfare. Falls Church, Virginia; Washington, D. C.: Office of the Surgeon General; Borden Institute, pp. 1–20. Available at: http://purl.access.gpo.gov/GPO/LPS101470.

Mock, M. and Fouet, A. (2001) ‘Anthrax’, Annual Review of Microbiology, 55(1), pp. 647–671. doi: 10.1146/annurev.micro.55.1.647.

Pannucci, J., Okinaka, R. T., Sabin, R. and Kuske, C. R. (2002) ‘Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species’, Journal of Bacteriology, 184(1), pp. 134–141. doi: 10.1128/JB.184.1.134-141.2002.

Purcell, B. K., Worsham, P. L. and Freidlander, A. M. (2007) ‘Chapter 4. Anthrax’, in Dembek Z. F. (ed.) Medical Aspects of Chemical and Biological Warfare. Falls Church, Virginia; Washington, D. C.: Office of the Surgeon General; Borden Institute, pp. 69–90. Available at: http://purl.access.gpo.gov/GPO/LPS101470.

WHO (World Health Organization), FAO (Food and Agriculture Organization of the United Nations) and OIE (World Organisation for Animal Health). (2008) Anthrax in Humans and Animals. 4th ed. Geneva: WHO. Available at: https://iris.who.int/bitstream/handle/10665/97503/9789241547536_eng.pdf.

WOAH (World Organisation for Animal Health) (2023a) ‘Chapter 1.1.6. Principles and methods of validation of diagnostic assays for infectious diseases’, in Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 12th ed. [version adopted in May 2023]. Paris: WOAH. Available at: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/1.01.06_VALIDATION.pdf.

WOAH (World Organisation for Animal Health) (2023b) ‘Chapter 3.1.1. Anthrax’, in Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 12th ed. [version adopted in May 2023]. Paris: WOAH. Available at: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.01.01_ANTHRAX.pdf.