Development of Technology for the Production of Symbiotic Biologically Active Supplement for Animals Based on Lactobacillus and Bifidobacterium

Guvvinska S. O.
National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: biotechvet2024@gmail.com

Summary. The study aimed to develop a technological procedure for the production of a symbiotic biologically active supplement for animals based on Lactobacillus and Bifidobacterium. Three pilot batches of the symbiotic preparation were manufactured. The technology for the production of a symbiotic biologically active supplement for animals has been developed. The scheme of the technological process of manufacturing a symbiotic is proposed: production of nutrient media and working solutions; cultivation of cultures of lacto- and bifidobacteria for the preparation of a symbiotic biological supplement for animals; freeze-drying of cultures of lacto- and bifidobacteria for a symbiotic biological supplement for animals; obtaining mass for a symbiotic biological supplement for animals; control of the finished product before release, packaging, labeling, transportation and storage of a symbiotic biological supplement for animals. The formulation of a symbiotic biologically active supplement is proposed: a mixture of freeze-dried cultures of Lactobacillus plantarum No. 7-317 and Bifidobacterium adolescentis No. 17-316 (55–65%), inulin (1.0–2.5%), lactose (1.0–2.5%), fructose (1.0–2.5%), starch (42–27.5%). The number of microbial cells per 1 cm³ of symbiotic is lactobacilli ≥ 10⁸, bifidobacteria ≥ 10⁸.

Keywords: Lactobacillus plantarum No. 7-317, Bifidobacterium adolescentis No. 17-316, freeze-drying.

Introduction. Scientific literature indicates that an imbalance between members of the intestinal microbial community and the host organism leads to dysbiosis (Guvvinska and Paliy, 2018; Floch et al., 2011; Khyzhniak, 2017). It should be noted that the use of antibiotics, various pharmaceuticals, and chemotherapy leads to the development of diseases of the gastrointestinal tract and other organs and systems of the animal body (Guvvinska, 2015, 2019; Starovoitova et al., 2012). As a result of scientific research, veterinary medicine has been enriched with biological bacterial preparations that have proven to be effective in the prevention and treatment of gastrointestinal diseases (Roberfroid, 2000).

According to researchers, until recently, only probiotic drugs were available on the market. Today, the range of probiotic drugs is expanding (Vastano et al., 2013; Ohland and MacNaughton, 2010). Domestic medical science has not ignored probiotics and has contributed its priority materials to the world of medical science. Special merits in this area are Kovalenko N. K., Kigel N. F., Shenderov B. Ya., Pidhorsykiv V. S., and others. Research institutes have published many works on probiotic drugs.

Recently, complex biological preparations based on probiotics have become increasingly popular. Many scientists claim that symbiotics are preparations containing a combination of probiotic cultures and prebiotics (Krupytska and Kaprelyants, 2016; Krupytska et al., 2018; Candela et al., 2010; Vitali et al., 2010). From the above, it can be concluded that the effect of symbiotics is the synergistic effect of living bacteria and non-living biologically active factors (Kianifar et al., 2014; Maydeo, 2010; Samuylenko et al., 2011). With the help of symbiotics, probiotic microorganisms colonize the epithelium of the gastrointestinal tract of animals, and their own microbiota is stimulated.

The work aimed to develop a technology for the production of a symbiotic biologically active supplement for animals based on Lactobacillus and Bifidobacterium.

Materials and methods. The development of technological regulations for the production of a symbiotic biologically active supplement for animals based on Lactobacillus and Bifidobacterium was carried out in the National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’. Three pilot batches of the symbiotic drug were produced. To create the symbiotic, we considered the following cultures: Bifidobacterium bifidum No. 3, Bifidobacterium longum No. 5, Lactobacillus plantarum No. 7-317, Bifidobacterium adolescentis No. 17-316, Lactobacillus casei No. 12. The bacteria were cultured on nutrient media in various combinations.

Comparing the level of the main biological parameters (number of microbial cells, acid formation activity, milk coagulation rate, etc.), Bifidobacterium

www.jvmbbs.kharkov.ua
The biochemical activity was determined by a conventional method. The symbiotic was inoculated into test tubes with skim milk (inoculation dose — 0.2 cm³ per 5 cm³ of milk). The inoculated symbiotic should curdle the milk within 48–72 hours with the formation of a characteristic solid clot without gas puffs. A symbiotic that does not meet the requirements is rejected.

The symbiotic drug should be harmless to white mice weighing 20 ± 1 g when administered orally in an amount corresponding to one dose of freeze-dried drug. The symbiotic was dissolved in 0.9% sodium chloride solution at the rate of 0.5 ml per dose. The resulting solution was orally administered to 12 mice weighing 20 ± 1 g into the stomach (using a special nozzle on a 1 ml syringe) — 0.5 ml each. The mice were observed for 21 days.

Experiments on animals were conducted following the recommendations of the ‘European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes’ (CE, 1986) and Council Directive 2010/63/EU (CEC, 2010), and in accordance with Art. 26 of the Law of Ukraine No. 3447-IV of 21.02.2006 ‘About protection of animals from cruel treatment’ (VRU, 2006) and basic bioethical principles (Simmonds, 2017). The research program was reviewed and approved by the Bioethics Committee of the National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’ under the current procedure.

All experiments were performed in triplicate. The results were processed by methods of variation statistics using Microsoft Excel for Windows 2010. To compare mean values Student’s t-test was used (Van Emden, 2019).

Results and discussion. To create a symbiotic dietary supplement for animals, according to the results of preliminary studies, we have selected Lactobacillus plantarum No. 7-317 and Bifidobacterium adolescentis No. 17-316 as the most promising probiotic cultures. Additionally, the product contains prebiotics — inulin, starch, and lactulose — which accelerate, stabilize, and enhance the vital activity of lactic acid and bifidobacteria in the gastrointestinal tract.

A formulation of a symbiotic dietary supplement was developed: a mixture of freeze-dried cultures of Lactobacillus plantarum No. 7-317 and Bifidobacterium adolescentis No. 17-316 (55–65%), inulin (1.0–2.5%), lactose (1.0–2.5%), fructose (1.0–2.5%), starch (the rest). The content of lyophilized probiotic bacteria in the finished product is not less than 10⁶ CFU. Three pilot batches of the symbiotic dietary supplement for animals were prepared for the experiments (Table 1).

Based on literature data and our research, the most promising sample of symbiotic No. 2 was obtained (Table 2).
To 250

Table 1 — Formulation of a symbiotic dietary supplement

<table>
<thead>
<tr>
<th>Experimental series</th>
<th>Formulation of a symbiotic dietary supplement, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacterial biomass</td>
</tr>
<tr>
<td>1</td>
<td>40.0±2.5</td>
</tr>
<tr>
<td>2</td>
<td>50.0±3.0</td>
</tr>
<tr>
<td>3</td>
<td>60.0±3.2</td>
</tr>
</tbody>
</table>

Table 2 — Biological characteristics of the bacteria included in the symbiotic preparation

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Bacteria that are part of a symbiotic dietary supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lactobacillus</td>
</tr>
<tr>
<td></td>
<td>plantarum No. 7-317</td>
</tr>
<tr>
<td></td>
<td>Bifidobacterium</td>
</tr>
<tr>
<td></td>
<td>adolescentis No. 17-316</td>
</tr>
<tr>
<td>Number of live bacteria, CFU/cm³</td>
<td>3.7 ± 0.12×10⁸</td>
</tr>
<tr>
<td></td>
<td>4.1 ± 0.17×10⁹</td>
</tr>
<tr>
<td>Acid formation activity, "I"</td>
<td>250 ± 5</td>
</tr>
<tr>
<td></td>
<td>230 ± 7</td>
</tr>
<tr>
<td>Milk fermentation rate, h</td>
<td>18–24</td>
</tr>
<tr>
<td></td>
<td>18–24</td>
</tr>
</tbody>
</table>

Table 2 shows that in the experimental series, the number of live bacteria ranged from 3.7±0.12×10⁸ CFU/cm³ to 4.1±0.17×10⁹ CFU/cm³, and the acid formation activity ranged from 230 ± 7 "I" to 250 ± 5 "I". It should be noted that the rate of milk fermentation for lactobacilli and bifidobacteria was within 18–24 h.

The next stage of our work was to develop technology for the production of a symbiotic biologically active additive for animals. The scheme of the manufacturing technology:

- Preparation of nutrient media for the cultivation of bacteria Lactobacillus plantarum No. 7-317 and Bifidobacterium adolescentis No. 17-316
- Sterilization of culture media 110 ± 1.0 °C for 20 min
- Cooling of culture media up to 30 °C
- Introduction of 5% daily cultures Lactobacillus plantarum No. 7-317 and Bifidobacterium adolescentis No. 17-316 in a ratio of 1:1
- Cultivation of bacterial mass at a temperature of 37.0 ± 1.0 °C for 48 h
- Freeze-drying of cultures of lacto- and bifidobacteria

During the production of a symbiotic, one of the most important conditions is the control of the technological process. A symbiotic dietary supplement for oral use is controlled by the following indicators: appearance, microbiological purity (bacterioscopic control and absence of foreign microflora); harmlessness; specific activity (number of live bacteria in one dose of the symbiotic), and acid formation activity of cultures (Table 3).

Table 3 — Standard quality indicators of symbiotic dietary supplements for animals

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Obtained results</th>
<th>Control methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Powder of white-cream color</td>
<td>Visually</td>
</tr>
<tr>
<td>Microbiological purity of a symbiotic dietary supplement</td>
<td>The product was not contaminated with bacterial and fungal microflora and contained only lacto- and bifidobacteria</td>
<td>In accordance with DSTU 4483:2005 (DSU, 2005)</td>
</tr>
<tr>
<td>Harmlessness</td>
<td>Symbiotic was harmless when tested on white mice</td>
<td>In accordance with the TUU</td>
</tr>
<tr>
<td>Specific activity</td>
<td>The number of lactobacilli was ≥ 10⁶, the number of bifidobacteria was ≥ 10⁶</td>
<td></td>
</tr>
<tr>
<td>Biochemical activity of the drug</td>
<td>The diluted preparation coagulates skim milk in test tubes within 18–24 h. Incubation at a temperature of 37 ± 0.5 °C</td>
<td></td>
</tr>
</tbody>
</table>

The test results showed that it was a white-cream-colored powder. The symbiotic dietary supplement was not contaminated with bacterial and fungal microflora, containing only lacto- and bifidobacteria. Based on the experiments, it is clear that twelve white mice weighing 20.0 ± 1.0 g remained alive and healthy for 21 days after oral administration of the diluted symbiotic dietary supplement at a dose of 0.5 cm³. During the experiments, it was found that the inoculated symbiotic on skim milk curdled it within 18–24 h with the formation of a characteristic solid clot without gas puffs. The number of
microbial cells in 1 cm³ of the symbiotic was: lactobacilli ≥ 10⁶, bifidobacteria ≥ 10⁸. The symbiotic dietary supplement was packed in plastic sachets, labeled, and then placed in boxes of 10. The symbiotic was stored in a dry place, protected from direct light, at a temperature between +4 °C and +8 °C.

Conclusion. The formulation of a symbiotic dietary supplement was developed: a mixture of freeze-dried cultures of Lactobacillus plantarum No. 7-317 and Bifidobacterium adolescentis No. 17-316 (55–65%), inulin (1.0–2.5%), lactose (1.0–2.5%), fructose (1.0–2.5%), starch (42–27.5%).

References

Part 2. Biotechnology

