Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
10, Issue 2, June 2024, Pages 13–19
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
IDENTIFICATION OF
INTRAMOLECULAR CONSERVED G-QUADRUPLEX MOTIFS IN THE
GENOME OF THE BOVINE FOAMY VIRUS
Balak O. K. 1, Balak S. O. 2, Lymanska O. Yu. 3
1 Kharkiv National Medical University, Kharkiv,
Ukraine
2 Institute for
Problems of Cryobiology and Cryomedicine of the
National Academy of Sciences of Ukraine, Kharkiv,
Ukraine
3 National Scientific
Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: olgaliman@ukr.net
Download
PDF (print version)
Citation for print version: Balak, O. K.,
Balak, S. O. and Lymanska, O. Yu.
(2024) ‘Identification of
intramolecular conserved G-quadruplex motifs in the
genome of the bovine foamy virus’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 10(2),
pp. 13–19.
Download
PDF (online version)
Citation for online version: Balak, O. K.,
Balak, S. O. and Lymanska, O. Yu.
(2024) ‘Identification of
intramolecular conserved G-quadruplex motifs in the
genome of the bovine foamy virus’, Journal for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 10(2), pp. 13–19. DOI: 10.36016/JVMBBS-2024-10-2-3.
Summary. G-quadruplexes (G4s) are guanine-rich DNA structures, which play an
essential regulatory role in key steps of the viral life cycle (replication,
transcription regulation, translation). Currently, there is no relevant
information about putative G4s in the bovine foamy
virus (BFV) genome. The goal of the present study was
the determination of such conservative non-B-DNA structures as conservative G-quadruplexes, which can be formed
by two and three G-quartets in the mRNA, sense, and antisense strands of the
bovine foamy virus proviral DNA. Bioinformatic
analysis was used to search motifs of intramolecular
G-quadruplexes in BFV mRNA
and proviral DNA and to determine the G-score (a
parameter that characterizes the stability of the G-quadruplex
in relative units). Based on multiple alignments of 27 BFV
isolates 26 putative conservative G-quadruplexes
from two G-quartets were found in mRNA and sense strand of BFV
proviral DNA with G-score from 30 to 36. 32 G4s formed by two G-quartets with a G-score from 30 to 36
and 2 G4s formed by three G-quartets were found
in the antisense strand of BFV proviral
DNA with a G-score of 53. These two G4s are direct
repeats and are localized in U5 5'LTR
and U5 3'-LTR. The density
of G4s was 2.1/kbp in the
sense strand of BFV proviral
DNA and 2.8/kbp in the antisense strand. A
localization map of potential stable conserved intramolecular G-quadruplexes formed by two and three G-tetrads on the BFV genome was created.
Conservative G4s are unevenly
distributed throughout the BFV genome. A
distinctive feature of the BFV genomic organization
is the fact that the antisense strand of the BFV proviral DNA is characterized by a
significantly higher density of G-quadruplexes
compared to one of the sense strands. The QGRS Mapper
software detects a significantly higher number of potential G4s
(34 G4s in the antisense strand of BFV proviral DNA) compared to the
G4Hunter software (7 G4s)
Keywords: bovine foamy
virus, BFV, G-quadruplex,
motif, non-canonical structure, direct repeat, antisense strand
References:
Abduljalil, J. M.
(2018) ‘Bacterial riboswitches and RNA thermometers: Nature and
contributions to pathogenesis’, Non-coding
RNA Research, 3(2), pp. 54–63. doi: 10.1016/j.ncrna.2018.04.003.
Agarwal, T.,
Roy, S., Kumar, S., Chakraborty, T. K. and Maiti, S. (2014) ‘In
the sense of transcription regulation by G-quadruplexes:
Asymmetric effects in sense and antisense strands’, Biochemistry,
53(23), pp. 3711–3718. doi:
10.1021/bi401451q.
Bedrat, A., Lacroix, L.
and Mergny, J.-L. (2016) ‘Re-evaluation
of G-quadruplex propensity with G4Hunter’,
Nucleic Acids Research, 44(4), pp. 1746–1759. doi: 10.1093/nar/gkw006.
Brázda, V., Kolomazník, J., Lýsek, J.,
Bartas, M., Fojta, M.,
Šťastný, J. and Mergny, J.-L. (2019) ‘G4Hunter
web application: a web server for G-quadruplex
prediction’, Bioinformatics, 35(18), pp. 3493–3495. doi: 10.1093/bioinformatics/btz087.
Brázda, V.,
Luo, Y., Bartas, M., Kaura, P.,
Porubiaková, O., Šťastný, J.,
Pečinka, P., Verga, D.,
Da Cunha, V., Takahashi, T. S., Forterre, P.,
Myllykallio, H., Fojta, M.
and Mergny, J.-L. (2020) ‘G-quadruplexes in the Archaea domain’, Biomolecules,
10(9), p. 1349. doi: 10.3390/biom10091349.
Cagirici, H. B., Budak, H. and Sen, T. Z. (2021)
‘Genome-wide discovery of G-quadruplexes in
barley’, Scientific Reports, 11(1), p. 7876. doi: 10.1038/s41598-021-86838-3.
Dalla Pozza, M.,
Abdullrahman, A., Cardin, C. J.,
Gasser, G. and Hall, J. P. (2022) ‘Three’s
a crowd — stabilisation, structure, and
applications of DNA triplexes’, Chemical Science, 13(35),
pp. 10193–10215. doi:
10.1039/D2SC01793H.
Enders, J. F.
and Peebles, T. C. (1954) ‘Propagation in tissue cultures of
cytopathogenic agents from patients with Measles’, Experimental
Biology and Medicine, 86(2), pp. 277–286. doi: 10.3181/00379727-86-21073.
Fay, M. M.,
Lyons, S. M. and Ivanov, P. (2017) ‘RNA G-quadruplexes in biology: Principles and molecular
mechanisms’, Journal of Molecular Biology, 429(14),
pp. 2127–2147. doi:
10.1016/j.jmb.2017.05.017.
Hall, T. A.
(1999) ‘BioEdit: A user-friendly biological
sequence alignment editor and analysis program for Windows 95/98/NT’, Nucleic
Acids Symposium Series, 41, pp. 95–98. Available at: https://www.academia.edu/2034992.
Hamann, M. and Lindemann, D. (2016) ‘Foamy virus
protein–nucleic acid interactions during particle morphogenesis’, Viruses,
8(9), p. 243. doi: 10.3390/v8090243.
Harris, L. M.
and Merrick, C. J. (2015) ‘G-quadruplexes
in pathogens: A common route to virulence control?’,
PLOS Pathogens, 11(2), p. e1004562. doi: 10.1371/journal.ppat.1004562.
Jaguva Vasudevan, A. A.,
Becker, D., Luedde, T., Gohlke, H.
and Münk, C. (2021) ‘Foamy viruses,
Bet, and APOBEC3 restriction’, Viruses,
13(3), p. 504. doi: 10.3390/v13030504.
Jenjaroenpun, P. and Kuznetsov, V. A. (2009) ‘TTS Mapping:
integrative web tool for analysis of triplex formation target DNA Sequences,
G-quadruplets and non-protein coding regulatory DNA elements in the human
genome’, BMC Genomics, 10(Suppl 3),
p. S9. doi:
10.1186/1471-2164-10-S3-S9.
Kikin, O., D’Antonio, L. and Bagga, P. S.
(2006) ‘QGRS Mapper: A web-based server for
predicting G-quadruplexes in nucleotide
sequences’, Nucleic Acids Research, 34(Web Server), pp. W676–W682. doi: 10.1093/nar/gkl253.
Le, D. T.,
Nguyen, S. V., Okamoto, M., Yamashita-Kawanishi, N.,
Dao, T. D., Bui, V. N., Ogawa, H., Imai, K. and Haga, T. (2021) ‘Molecular characterization of
bovine foamy virus and its association with bovine leukemia virus infection in
Vietnamese cattle’, Journal of Veterinary Medical Science, 83(8),
pp. 1273–1277. doi:
10.1292/jvms.21-0190.
Luo, X.,
Zhang, J., Gao, Y., Pan, W.,
Yang, Y., Li, X., Chen, L., Wang, C. and Wang, Y.
(2023) ‘Emerging roles of i-motif in gene
expression and disease treatment’, Frontiers in Pharmacology, 14,
p. 1136251. doi: 10.3389/fphar.2023.1136251.
Malmquist, W. A.,
Van der Maaten, M. J. and Boothe, A. D. (1969) ‘Isolation,
immunodiffusion, immunofluorescence, and electron microscopy of a syncytial
virus of lymphosarcomatous and apparently normal
cattle’, Cancer Research, 29(1), pp. 188–200. Available
at: https://aacrjournals.org/cancerres/article/29/1/188/477078.
Materniak-Kornas, M., Osiński, Z., Rudzki, M.
and Kuźmak, J. (2017) ‘Development of
a recombinant protein-based ELISA for detection of antibodies against bovine
foamy virus’, Journal of Veterinary Research, 61(3),
pp. 247–252. doi:
10.1515/jvetres-2017-0034.
Materniak-Kornas, M.,
Tan, J., Heit-Mondrzyk, A., Hotz-Wagenblatt, A. and Löchelt, M.
(2019) ‘Bovine foamy virus: Shared and unique molecular features in vitro and in vivo’, Viruses, 11(12), p. 1084. doi: 10.3390/v11121084.
Meiering, C. D. and
Maxine, L. L. (2001) ‘Historical perspective of foamy virus
epidemiology and infection’, Clinical Microbiology Reviews, 14(1),
pp. 165–176. doi:
10.1128/CMR.14.1.165-176.2001.
Mekata, H., Okagawa, T., Konnai, S.
and Miyazawa, T. (2021) ‘Molecular epidemiology and whole-genome
analysis of bovine foamy virus in Japan’, Viruses, 13(6),
p. 1017. doi: 10.3390/v13061017.
Menendez, C.,
Frees, S. and Bagga, P. S. (2012)
‘QGRS-H Predictor: A web server for predicting
homologous quadruplex forming G-rich sequence motifs
in nucleotide sequences’, Nucleic Acids Research, 40(W1), pp. W96–W103. doi:
10.1093/nar/gks422.
Okamoto, M.,
Oguma, K., Yamashita-Kawanishi, N., Ichijo, T., Hatama, S.,
Endo, M., Ishikawa, M. and Haga, T.
(2020) ‘Genomic characterization and distribution of bovine foamy virus
in Japan’, Journal of Veterinary Medical Science, 82(11),
pp. 1607–1613. doi:
10.1292/jvms.20-0429.
Perrone, R., Lavezzo, E., Palù, G.
and Richter, S. N. (2017) ‘Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat
Promoter of Lentiviruses’, Scientific Reports, 7(1), p. 2018.
doi: 10.1038/s41598-017-02291-1.
Pinto-Santini, D. M., Stenbak, C. R.
and Linial, M. L. (2017) ‘Foamy virus
zoonotic infections’, Retrovirology,
14(1), p. 55. doi: 10.1186/s12977-017-0379-9.
Puig Lombardi, E. and Londoño-Vallejo, A. (2020) ‘A guide to
computational methods for G-quadruplex
prediction’, Nucleic Acids Research, 48(1), pp. 1–15. doi: 10.1093/nar/gkz1097.
Rethwilm, A. and Bodem, J. (2013) ‘Evolution of foamy viruses:
The most ancient of all retroviruses’, Viruses, 5(10),
pp. 2349–2374. doi:
10.3390/v5102349.
Song, K.,
Li, B., Li, H., Zhang, R., Zhang, X., Luan, R.,
Liu, Y. and Yang, L. (2024) ‘The characterization of G-quadruplexes in tobacco genome and their function under
abiotic stress’, International Journal of Molecular Sciences,
25(8), p. 4331. doi: 10.3390/ijms25084331.
Tamura, K.,
Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) ‘MEGA6: Molecular Evolutionary Genetics Analysis Version
6.0’, Molecular Biology and Evolution, 30(12),
pp. 2725–2729. doi:
10.1093/molbev/mst197.
Umar, M. I.,
Ji, D., Chan, C.-Y. and
Kwok, C. K. (2019) ‘G-quadruplex-based
fluorescent turn-on ligands and aptamers: From development to
applications’, Molecules, 24(13), p. 2416. doi: 10.3390/molecules24132416.
Van Der Werf, R., Wijmenga, S. S.,
Heus, H. A. and Olsthoorn, R. C. L.
(2013) ‘Structural and thermodynamic signatures that define pseudotriloop RNA hairpins’, RNA, 19(12),
pp. 1833–1839. doi:
10.1261/rna.039636.113.
Wang, J.,
Huang, H., Zhao, K., Teng, Y.,
Zhao, L., Xu, Z., Zheng, Y., Zhang, L., Li, C., Duan, Y., Liang, K., Zhou, X.,
Cheng, X. and Xia, Y. (2023) ‘G-quadruplex
in Hepatitis B virus pregenomic RNA promotes its
translation’, Journal of Biological Chemistry, 299(9),
p. 105151. doi: 10.1016/j.jbc.2023.105151.
Zaccaria, F. and
Fonseca Guerra, C. (2018) ‘RNA versus DNA G‐quadruplex: The origin of
increased stability’, Chemistry — A European Journal,
24(61), pp. 16315–16322. doi:
10.1002/chem.201803530.