Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 10, Issue 2, June 2024, Pages 13–19

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

IDENTIFICATION OF INTRAMOLECULAR CONSERVED G-QUADRUPLEX MOTIFS IN THE GENOME OF THE BOVINE FOAMY VIRUS

Balak O. K. 1, Balak S. O. 2, Lymanska O. Yu. 3

1 Kharkiv National Medical University, Kharkiv, Ukraine

2 Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

3 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: olgaliman@ukr.net

Download PDF (print version)

Citation for print version: Balak, O. K., Balak, S. O. and Lymanska, O. Yu. (2024) ‘Identification of intramolecular conserved G-quadruplex motifs in the genome of the bovine foamy virus’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 10(2), pp. 13–19.

Download PDF (online version)

Citation for online version: Balak, O. K., Balak, S. O. and Lymanska, O. Yu. (2024) ‘Identification of intramolecular conserved G-quadruplex motifs in the genome of the bovine foamy virus’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 10(2), pp. 13–19. DOI: 10.36016/JVMBBS-2024-10-2-3.

Summary. G-quadruplexes (G4s) are guanine-rich DNA structures, which play an essential regulatory role in key steps of the viral life cycle (replication, transcription regulation, translation). Currently, there is no relevant information about putative G4s in the bovine foamy virus (BFV) genome. The goal of the present study was the determination of such conservative non-B-DNA structures as conservative G-quadruplexes, which can be formed by two and three G-quartets in the mRNA, sense, and antisense strands of the bovine foamy virus proviral DNA. Bioinformatic analysis was used to search motifs of intramolecular G-quadruplexes in BFV mRNA and proviral DNA and to determine the G-score (a parameter that characterizes the stability of the G-quadruplex in relative units). Based on multiple alignments of 27 BFV isolates 26 putative conservative G-quadruplexes from two G-quartets were found in mRNA and sense strand of BFV proviral DNA with G-score from 30 to 36. 32 G4s formed by two G-quartets with a G-score from 30 to 36 and 2 G4s formed by three G-quartets were found in the antisense strand of BFV proviral DNA with a G-score of 53. These two G4s are direct repeats and are localized in U5 5'LTR and U5 3'-LTR. The density of G4s was 2.1/kbp in the sense strand of BFV proviral DNA and 2.8/kbp in the antisense strand. A localization map of potential stable conserved intramolecular G-quadruplexes formed by two and three G-tetrads on the BFV genome was created. Conservative G4s are unevenly distributed throughout the BFV genome. A distinctive feature of the BFV genomic organization is the fact that the antisense strand of the BFV proviral DNA is characterized by a significantly higher density of G-quadruplexes compared to one of the sense strands. The QGRS Mapper software detects a significantly higher number of potential G4s (34 G4s in the antisense strand of BFV proviral DNA) compared to the G4Hunter software (7 G4s)

Keywords: bovine foamy virus, BFV, G-quadruplex, motif, non-canonical structure, direct repeat, antisense strand

References:

Abduljalil, J. M. (2018) ‘Bacterial riboswitches and RNA thermometers: Nature and contributions to pathogenesis’, Non-coding RNA Research, 3(2), pp. 54–63. doi: 10.1016/j.ncrna.2018.04.003.

Agarwal, T., Roy, S., Kumar, S., Chakraborty, T. K. and Maiti, S. (2014) ‘In the sense of transcription regulation by G-quadruplexes: Asymmetric effects in sense and antisense strands’, Biochemistry, 53(23), pp. 3711–3718. doi: 10.1021/bi401451q.

Bedrat, A., Lacroix, L. and Mergny, J.-L. (2016) ‘Re-evaluation of G-quadruplex propensity with G4Hunter’, Nucleic Acids Research, 44(4), pp. 1746–1759. doi: 10.1093/nar/gkw006.

Brázda, V., Kolomazník, J., Lýsek, J., Bartas, M., Fojta, M., Šťastný, J. and Mergny, J.-L. (2019) ‘G4Hunter web application: a web server for G-quadruplex prediction’, Bioinformatics, 35(18), pp. 3493–3495. doi: 10.1093/bioinformatics/btz087.

Brázda, V., Luo, Y., Bartas, M., Kaura, P., Porubiaková, O., Šťastný, J., Pečinka, P., Verga, D., Da Cunha, V., Takahashi, T. S., Forterre, P., Myllykallio, H., Fojta, M. and Mergny, J.-L. (2020) ‘G-quadruplexes in the Archaea domain’, Biomolecules, 10(9), p. 1349. doi: 10.3390/biom10091349.

Cagirici, H. B., Budak, H. and Sen, T. Z. (2021) ‘Genome-wide discovery of G-quadruplexes in barley’, Scientific Reports, 11(1), p. 7876. doi: 10.1038/s41598-021-86838-3.

Dalla Pozza, M., Abdullrahman, A., Cardin, C. J., Gasser, G. and Hall, J. P. (2022) ‘Three’s a crowd — stabilisation, structure, and applications of DNA triplexes’, Chemical Science, 13(35), pp. 10193–10215. doi: 10.1039/D2SC01793H.

Enders, J. F. and Peebles, T. C. (1954) ‘Propagation in tissue cultures of cytopathogenic agents from patients with Measles’, Experimental Biology and Medicine, 86(2), pp. 277–286. doi: 10.3181/00379727-86-21073.

Fay, M. M., Lyons, S. M. and Ivanov, P. (2017) ‘RNA G-quadruplexes in biology: Principles and molecular mechanisms’, Journal of Molecular Biology, 429(14), pp. 2127–2147. doi: 10.1016/j.jmb.2017.05.017.

Hall, T. A. (1999) ‘BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT’, Nucleic Acids Symposium Series, 41, pp. 95–98. Available at: https://www.academia.edu/2034992.

Hamann, M. and Lindemann, D. (2016) ‘Foamy virus protein–nucleic acid interactions during particle morphogenesis’, Viruses, 8(9), p. 243. doi: 10.3390/v8090243.

Harris, L. M. and Merrick, C. J. (2015) ‘G-quadruplexes in pathogens: A common route to virulence control?’, PLOS Pathogens, 11(2), p. e1004562. doi: 10.1371/journal.ppat.1004562.

Jaguva Vasudevan, A. A., Becker, D., Luedde, T., Gohlke, H. and Münk, C. (2021) ‘Foamy viruses, Bet, and APOBEC3 restriction’, Viruses, 13(3), p. 504. doi: 10.3390/v13030504.

Jenjaroenpun, P. and Kuznetsov, V. A. (2009) ‘TTS Mapping: integrative web tool for analysis of triplex formation target DNA Sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome’, BMC Genomics, 10(Suppl 3), p. S9. doi: 10.1186/1471-2164-10-S3-S9.

Kikin, O., D’Antonio, L. and Bagga, P. S. (2006) ‘QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences’, Nucleic Acids Research, 34(Web Server), pp. W676W682. doi: 10.1093/nar/gkl253.

Le, D. T., Nguyen, S. V., Okamoto, M., Yamashita-Kawanishi, N., Dao, T. D., Bui, V. N., Ogawa, H., Imai, K. and Haga, T. (2021) ‘Molecular characterization of bovine foamy virus and its association with bovine leukemia virus infection in Vietnamese cattle’, Journal of Veterinary Medical Science, 83(8), pp. 1273–1277. doi: 10.1292/jvms.21-0190.

Luo, X., Zhang, J., Gao, Y., Pan, W., Yang, Y., Li, X., Chen, L., Wang, C. and Wang, Y. (2023) ‘Emerging roles of i-motif in gene expression and disease treatment’, Frontiers in Pharmacology, 14, p.  1136251. doi: 10.3389/fphar.2023.1136251.

Malmquist, W. A., Van der Maaten, M. J. and Boothe, A. D. (1969) ‘Isolation, immunodiffusion, immunofluorescence, and electron microscopy of a syncytial virus of lymphosarcomatous and apparently normal cattle’, Cancer Research, 29(1), pp. 188–200. Available at: https://aacrjournals.org/cancerres/article/29/1/188/477078.

Materniak-Kornas, M., Osiński, Z., Rudzki, M. and Kuźmak, J. (2017) ‘Development of a recombinant protein-based ELISA for detection of antibodies against bovine foamy virus’, Journal of Veterinary Research, 61(3), pp. 247–252. doi: 10.1515/jvetres-2017-0034.

Materniak-Kornas, M., Tan, J., Heit-Mondrzyk, A., Hotz-Wagenblatt, A. and Löchelt, M. (2019) ‘Bovine foamy virus: Shared and unique molecular features in vitro and in vivo’, Viruses, 11(12), p. 1084. doi: 10.3390/v11121084.

Meiering, C. D. and Maxine, L. L. (2001) ‘Historical perspective of foamy virus epidemiology and infection’, Clinical Microbiology Reviews, 14(1), pp. 165–176. doi: 10.1128/CMR.14.1.165-176.2001.

Mekata, H., Okagawa, T., Konnai, S. and Miyazawa, T. (2021) ‘Molecular epidemiology and whole-genome analysis of bovine foamy virus in Japan’, Viruses, 13(6), p. 1017. doi: 10.3390/v13061017.

Menendez, C., Frees, S. and Bagga, P. S. (2012) ‘QGRS-H Predictor: A web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide sequences’, Nucleic Acids Research, 40(W1), pp. W96W103. doi: 10.1093/nar/gks422.

Okamoto, M., Oguma, K., Yamashita-Kawanishi, N., Ichijo, T., Hatama, S., Endo, M., Ishikawa, M. and Haga, T. (2020) ‘Genomic characterization and distribution of bovine foamy virus in Japan’, Journal of Veterinary Medical Science, 82(11), pp. 1607–1613. doi: 10.1292/jvms.20-0429.

Perrone, R., Lavezzo, E., Palù, G. and Richter, S. N. (2017) ‘Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses’, Scientific Reports, 7(1), p. 2018. doi: 10.1038/s41598-017-02291-1.

Pinto-Santini, D. M., Stenbak, C. R. and Linial, M. L. (2017) ‘Foamy virus zoonotic infections’, Retrovirology, 14(1), p. 55. doi: 10.1186/s12977-017-0379-9.

Puig Lombardi, E. and Londoño-Vallejo, A. (2020) ‘A guide to computational methods for G-quadruplex prediction’, Nucleic Acids Research, 48(1), pp. 1–15. doi: 10.1093/nar/gkz1097.

Rethwilm, A. and Bodem, J. (2013) ‘Evolution of foamy viruses: The most ancient of all retroviruses’, Viruses, 5(10), pp. 2349–2374. doi: 10.3390/v5102349.

Song, K., Li, B., Li, H., Zhang, R., Zhang, X., Luan, R., Liu, Y. and Yang, L. (2024) ‘The characterization of G-quadruplexes in tobacco genome and their function under abiotic stress’, International Journal of Molecular Sciences, 25(8), p. 4331. doi: 10.3390/ijms25084331.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) ‘MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0’, Molecular Biology and Evolution, 30(12), pp. 2725–2729. doi: 10.1093/molbev/mst197.

Umar, M. I., Ji, D., Chan, C.-Y. and Kwok, C. K. (2019) ‘G-quadruplex-based fluorescent turn-on ligands and aptamers: From development to applications’, Molecules, 24(13), p. 2416. doi: 10.3390/molecules24132416.

Van Der Werf, R., Wijmenga, S. S., Heus, H. A. and Olsthoorn, R. C. L. (2013) ‘Structural and thermodynamic signatures that define pseudotriloop RNA hairpins’, RNA, 19(12), pp. 1833–1839. doi: 10.1261/rna.039636.113.

Wang, J., Huang, H., Zhao, K., Teng, Y., Zhao, L., Xu, Z., Zheng, Y., Zhang, L., Li, C., Duan, Y., Liang, K., Zhou, X., Cheng, X. and Xia, Y. (2023) ‘G-quadruplex in Hepatitis B virus pregenomic RNA promotes its translation’, Journal of Biological Chemistry, 299(9), p. 105151. doi: 10.1016/j.jbc.2023.105151.

Zaccaria, F. and Fonseca Guerra, C. (2018) ‘RNA versus DNA Gquadruplex: The origin of increased stability’, Chemistry — A European Journal, 24(61), pp. 16315–16322. doi: 10.1002/chem.201803530.