Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
10, Issue 2, June 2024, Pages 25–29
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
ANTAGONISTIC
ACTIVITY OF PROBIOTIC BACILLUS STRAINS ON PLANKTONIC FORMS OF
BIOFILM-FORMING BACTERIA AND FUNGI
Kolchyk O. V., Buzun A. I.,
Sazonenko S. M.
National Scientific
Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: kolchyk-elena@ukr.net
Download
PDF (print version)
Citation for print version: Kolchyk, O. V.,
Buzun, A. I. and Sazonenko, S. M.
(2024) ‘Antagonistic activity of
probiotic Bacillus strains on planktonic forms of biofilm-forming
bacteria and fungi’, Journal
for Veterinary Medicine, Biotechnology and Biosafety, 10(2),
pp. 25–29.
Download
PDF (online version)
Citation for online version: Kolchyk, O. V.,
Buzun, A. I. and Sazonenko, S. M.
(2024) ‘Antagonistic activity of
probiotic Bacillus strains on planktonic forms of biofilm-forming
bacteria and fungi’, Journal
for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 10(2), pp. 25–29. DOI: 10.36016/JVMBBS-2024-10-2-5.
Summary. The presence of microbial biofilms of pathogenic
fungi and bacterial contaminants in animal feed can lead to disruption of the
intestinal microflora and the development of infectious diseases. A promising
field of study is the examination of the antagonistic effect of bacteria from
the genus Bacillus on microbial biofilms and planktonic forms of
pathogenic microorganisms in feed. The objective of this research is to
investigate the antimicrobial and antifungal activity of the probiotic complex
of bacteria from the genus Bacillus against planktonic forms of
biofilm-forming pathogenic fungi and microorganisms isolated from pig feed. The
antagonistic activity of five probiotic strains against the test cultures Pasteurella multocida
type D No. 07, Neisseria meningitidis
No. 18, Streptococcus haemolyticus
No. 14, Escherichia coli No. 21, Actinobacillus
pleuropneumoniae No. 12 was studied by the
method of delayed inoculation (perpendicular strokes) in three replicates. The
antifungal activity against the test fungi Aspergillus niger No. 1 and Aspergillus candidus No. 2 was evaluated by the injection
method. According to the results of the study, it was
determined that the strain B. licheniformis UNCSM-033 showed a pronounced antagonistic
effect on the bacteria N. meningitidis
No. 18 with an inhibition level of 26.7 ± 1.2 mm.
Inhibition of growth and reproduction of S. haemolyticus
No. 14 at a high level of intensity was determined in four probiotic
strains with diameters of growth inhibition from
28.7 ± 1.2 mm to 34.0 ± 1.2 mm.
A sufficiently high level of antagonism against the test culture E. coli
No. 21 was shown by five experimental probiotic strains in the range of
24.7 ± 1.2 mm to 30.7 ± 2.3 mm,
respectively. A very high level of antagonistic properties of the
probiotic complex of bacteria of the genus Bacillus from five
experimental strains against five types of pathogenic microorganisms from
38.3 ± 0.9 mm was shown in A. pleuropneumoniae No. 12 and up to
47.3 ± 0.9 mm in P. multocida
type D No. 07. The highest degree of antagonistic activity against
five test cultures of biofilm-forming microorganisms and antifungal effect
against two test strains of pathogenic fungi, A. niger
No. 1 and A. candidus No. 2,
was demonstrated by the probiotic complex of bacteria belonging to the genus Bacillus
(five strains). The pronounced antimicrobial properties of the five strains of
the probiotic complex of bacteria of the genus Bacillus allow for the
potential development of drugs based on them as an alternative to antibiotics
Keywords: antifungal effect,
antibiotic substances, inhibitory activity
References:
Adeniji, A. A., Aremu, O. S.
and Babalola, O. O. (2019) ‘Selecting
lipopeptide‐producing, Fusarium‐suppressing Bacillus spp.: Metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5’,
MicrobiologyOpen, 8(6), p. e00742. doi:
10.1002/mbo3.742.
Aguilar, C., Vlamakis, H.,
Guzman, A., Losick, R. and Kolter, R. (2010) ‘KinD
is a checkpoint protein linking spore formation to extracellular-matrix
production in Bacillus subtilis
biofilms’, mBio, 1(1), p. e00035-10. doi:
10.1128/mBio.00035-10.
AlGburi, A., Volski, A.,
Cugini, C., Walsh, E. M., Chistyakov, V. A., Mazanko, M. S.,
Bren, A. B., Dicks, L. M. T. and Chikindas, M. L.
(2016) ‘Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens
B-1895’, Advances in Microbiology, 6(6), pp. 432–452. doi: 10.4236/aim.2016.66043.
Arnaouteli, S., Bamford, N. C.,
Stanley-Wall, N. R. and Kovács, Á. T.
(2021) ‘Bacillus subtilis
biofilm formation and social interactions’, Nature Reviews
Microbiology, 19(9), pp. 600–614. doi: 10.1038/s41579-021-00540-9.
Cairns, L. S., Hobley, L.
and Stanley‐Wall, N. R. (2014) ‘Biofilm formation by Bacillus
subtilis: New insights into regulatory strategies and assembly
mechanisms’, Molecular Microbiology, 93(4),
pp. 587–598. doi:
10.1111/mmi.12697.
Chechet, O. M., Kovalenko, V. L., Horbatyuk, O. I.,
Gaidei, O. S., Kravtsova, O. L.,
Andriyashchuk, V. O., Musiets, I. V.
and Ordynska, D. O. (2022) ‘Study in vitro of antagonistic activity of Bacillus isolates and selection of
promising probiotic strains’ [Vyvchennia in vitro antahonistychnoi
aktyvnosti izoliativ rodu Bacillus ta vidbir perspektyvnykh probiotychnykh shtamiv], Scientific
and Technical Bulletin of State Scientific Research Control Institute of
Veterinary Medical Products and Fodder Additives and Institute of Animal
Biology [Naukovo-tekhnichnyi biuleten
Derzhavnoho naukovo-doslidnoho
kontrolnoho instytutu veterynarnykh preparativ ta kormovykh dobavok i Instytutu biolohii
tvaryn], 23(1), pp. 219–227. doi:
10.36359/scivp.2022-23-1.28. [in Ukrainian].
Chen, Y.-A., Chiu, W.-C.,
Wang, T.-Y., Wong, H. and Tang, C.-T. (2024) ‘Isolation
and characterization of an antimicrobial Bacillus
subtilis strain O-741 against Vibrio parahaemolyticus’, PLoS
One, 19(4), p. e0299015. doi: 10.1371/journal.pone.0299015.
Cutting, S. M. (2011)
‘Bacillus probiotics’, Food Microbiology, 28(2),
pp. 214–220. doi:
10.1016/j.fm.2010.03.007.
Ivchenko, V. M., Sharandak, V. V.,
Kozak, M. V. and Horbatiuk, O. I.
(2004) Handbook of Sanitary and
Microbiological Methods of Research of Food Products and Environmental Objects
[Dovidnyk sanitarno-mikrobiolohichnykh
metodiv doslidzhennia kharchovykh produktiv ta obiektiv dovkillia]. Bila Tserkva. [in
Ukrainian].
Kadhum, H. A. and Hasan, T. H.
(2019) ‘The study of Bacillus
subtilis antimicrobial activity on some of the pathological
isolates’, International Journal of Drug Delivery Technology,
9(2), pp. 193–196. doi:
10.25258/ijddt.9.2.12.
Khardziani, T., Sokhadze, K.,
Kachlishvili, E., Chistyakov, V.
and Elisashvili, V. (2017) ‘Optimization
of enhanced probiotic spores production in submerged cultivation of Bacillus amyloliquefaciens
B-1895’, Journal of Microbiology, Biotechnology and Food Sciences,
7(2), pp. 132–136. doi:
10.15414/jmbfs.2017.7.2.132-136.
Kolchyk, O., Illarionova, Т.,
Buzun, A., Paliy, A.
and Palii, A. (2022) ‘Influence of
probiotic microorganisms on microbial biofilms in feeds’, Scientific
Horizons, 25(1), pp. 41–50. doi: 10.48077/scihor.25(1).2022.41-50.
Kotowicz, N., Bhardwaj, R. K.,
Ferreira, W. T., Hong, H. A., Olender, A.,
Ramirez, J. and Cutting, S. M. (2019) ‘Safety and
probiotic evaluation of two Bacillus
strains producing antioxidant compounds’, Beneficial Microbes,
10(7), pp. 759–772. doi:
10.3920/BM2019.0040.
Mardonov, I., Azimova, N.,
Turaeva, S., Nazarova, M.,
Kobilov, F., Abdullaev, A.
and Khalilov, I. (2021) ‘Antifungal and
antibacterial activity of bacteria of Bacillus
thuringiensis strains against to phytopathogenic
microorganisms’ [Antifungal’naya i antibakterial’naya aktivnost’ bakteriy shtammov Bacillus
thuringiensis protiv fitopatogennykh
mikroorganizmov], Universum:
Chemistry and Biology [Universum: Khimiya
i biologiya], 12,
p. 12705. doi: 10.32743/UniChem.2021.90.12.12705.
Petrova, O. E. and Sauer, K. (2016)
‘Escaping the biofilm in more than one way: Desorption, detachment or
dispersion’, Current Opinion in Microbiology, 30,
pp. 67–78. doi: 10.1016/j.mib.2016.01.004.
Sidorova, S. G. (2020) ‘Antifungal
activity of soil bacteria against some micotic agents
of tomato’ [Antifungal’naya aktivnost’ pochvennykh bakteriy v otnoshenii nekotorykh vozbuditeley mikozov tomata], Vegetable
Growing [Ovoshchevodstvo], 28, pp. 124–135. Available at: https://veget.belal.by/jour/article/view/107. [in Russian].
Sumi, C. D., Yang, B. W.,
Yeo, I.-C. and Hahm, Y. T.
(2015) ‘Antimicrobial peptides of the genus Bacillus: A new era
for antibiotics’, Canadian Journal of Microbiology, 61(2),
pp. 93–103. doi: 10.1139/cjm-2014-0613.