Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 10, Issue 2, June 2024, Pages 25–29

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

ANTAGONISTIC ACTIVITY OF PROBIOTIC BACILLUS STRAINS ON PLANKTONIC FORMS OF BIOFILM-FORMING BACTERIA AND FUNGI

Kolchyk O. V., Buzun A. I., Sazonenko S. M.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: kolchyk-elena@ukr.net

Download PDF (print version)

Citation for print version: Kolchyk, O. V., Buzun, A. I. and Sazonenko, S. M. (2024) ‘Antagonistic activity of probiotic Bacillus strains on planktonic forms of biofilm-forming bacteria and fungi’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 10(2), pp. 25–29.

Download PDF (online version)

Citation for online version: Kolchyk, O. V., Buzun, A. I. and Sazonenko, S. M. (2024) ‘Antagonistic activity of probiotic Bacillus strains on planktonic forms of biofilm-forming bacteria and fungi’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 10(2), pp. 25–29. DOI: 10.36016/JVMBBS-2024-10-2-5.

Summary. The presence of microbial biofilms of pathogenic fungi and bacterial contaminants in animal feed can lead to disruption of the intestinal microflora and the development of infectious diseases. A promising field of study is the examination of the antagonistic effect of bacteria from the genus Bacillus on microbial biofilms and planktonic forms of pathogenic microorganisms in feed. The objective of this research is to investigate the antimicrobial and antifungal activity of the probiotic complex of bacteria from the genus Bacillus against planktonic forms of biofilm-forming pathogenic fungi and microorganisms isolated from pig feed. The antagonistic activity of five probiotic strains against the test cultures Pasteurella multocida type D No. 07, Neisseria meningitidis No. 18, Streptococcus haemolyticus No. 14, Escherichia coli No. 21, Actinobacillus pleuropneumoniae No. 12 was studied by the method of delayed inoculation (perpendicular strokes) in three replicates. The antifungal activity against the test fungi Aspergillus niger No. 1 and Aspergillus candidus No. 2 was evaluated by the injection method. According to the results of the study, it was determined that the strain B. licheniformis UNCSM-033 showed a pronounced antagonistic effect on the bacteria N. meningitidis No. 18 with an inhibition level of 26.7 ± 1.2 mm. Inhibition of growth and reproduction of S. haemolyticus No. 14 at a high level of intensity was determined in four probiotic strains with diameters of growth inhibition from 28.7 ± 1.2 mm to 34.0 ± 1.2 mm. A sufficiently high level of antagonism against the test culture E. coli No. 21 was shown by five experimental probiotic strains in the range of 24.7 ± 1.2 mm to 30.7 ± 2.3 mm, respectively. A very high level of antagonistic properties of the probiotic complex of bacteria of the genus Bacillus from five experimental strains against five types of pathogenic microorganisms from 38.3 ± 0.9 mm was shown in A. pleuropneumoniae No. 12 and up to 47.3 ± 0.9 mm in P. multocida type D No. 07. The highest degree of antagonistic activity against five test cultures of biofilm-forming microorganisms and antifungal effect against two test strains of pathogenic fungi, A. niger No. 1 and A. candidus No. 2, was demonstrated by the probiotic complex of bacteria belonging to the genus Bacillus (five strains). The pronounced antimicrobial properties of the five strains of the probiotic complex of bacteria of the genus Bacillus allow for the potential development of drugs based on them as an alternative to antibiotics

Keywords: antifungal effect, antibiotic substances, inhibitory activity

References:

Adeniji, A. A., Aremu, O. S. and Babalola, O. O. (2019) ‘Selecting lipopeptideproducing, Fusariumsuppressing Bacillus spp.: Metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5’, MicrobiologyOpen, 8(6), p. e00742. doi: 10.1002/mbo3.742.

Aguilar, C., Vlamakis, H., Guzman, A., Losick, R. and Kolter, R. (2010) ‘KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms’, mBio, 1(1), p. e00035-10. doi: 10.1128/mBio.00035-10.

AlGburi, A., Volski, A., Cugini, C., Walsh, E. M., Chistyakov, V. A., Mazanko, M. S., Bren, A. B., Dicks, L. M. T. and Chikindas, M. L. (2016) ‘Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895’, Advances in Microbiology, 6(6), pp. 432–452. doi: 10.4236/aim.2016.66043.

Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. and Kovács, Á. T. (2021) ‘Bacillus subtilis biofilm formation and social interactions’, Nature Reviews Microbiology, 19(9), pp. 600–614. doi: 10.1038/s41579-021-00540-9.

Cairns, L. S., Hobley, L. and StanleyWall, N. R. (2014) ‘Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms’, Molecular Microbiology, 93(4), pp. 587–598. doi: 10.1111/mmi.12697.

Chechet, O. M., Kovalenko, V. L., Horbatyuk, O. I., Gaidei, O. S., Kravtsova, O. L., Andriyashchuk, V. O., Musiets, I. V. and Ordynska, D. O. (2022) ‘Study in vitro of antagonistic activity of Bacillus isolates and selection of promising probiotic strains’ [Vyvchennia in vitro antahonistychnoi aktyvnosti izoliativ rodu Bacillus ta vidbir perspektyvnykh probiotychnykh shtamiv], Scientific and Technical Bulletin of State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives and Institute of Animal Biology [Naukovo-tekhnichnyi biuleten Derzhavnoho naukovo-doslidnoho kontrolnoho instytutu veterynarnykh preparativ ta kormovykh dobavok i Instytutu biolohii tvaryn], 23(1), pp. 219–227. doi: 10.36359/scivp.2022-23-1.28. [in Ukrainian].

Chen, Y.-A., Chiu, W.-C., Wang, T.-Y., Wong, H. and Tang, C.-T. (2024) ‘Isolation and characterization of an antimicrobial Bacillus subtilis strain O-741 against Vibrio parahaemolyticus’, PLoS One, 19(4), p. e0299015. doi: 10.1371/journal.pone.0299015.

Cutting, S. M. (2011) ‘Bacillus probiotics’, Food Microbiology, 28(2), pp. 214–220. doi: 10.1016/j.fm.2010.03.007.

Ivchenko, V. M., Sharandak, V. V., Kozak, M. V. and Horbatiuk, O. I. (2004) Handbook of Sanitary and Microbiological Methods of Research of Food Products and Environmental Objects [Dovidnyk sanitarno-mikrobiolohichnykh metodiv doslidzhennia kharchovykh produktiv ta obiektiv dovkillia]. Bila Tserkva. [in Ukrainian].

Kadhum, H. A. and Hasan, T. H. (2019) ‘The study of Bacillus subtilis antimicrobial activity on some of the pathological isolates’, International Journal of Drug Delivery Technology, 9(2), pp. 193–196. doi: 10.25258/ijddt.9.2.12.

Khardziani, T., Sokhadze, K., Kachlishvili, E., Chistyakov, V. and Elisashvili, V. (2017) ‘Optimization of enhanced probiotic spores production in submerged cultivation of Bacillus amyloliquefaciens B-1895’, Journal of Microbiology, Biotechnology and Food Sciences, 7(2), pp. 132–136. doi: 10.15414/jmbfs.2017.7.2.132-136.

Kolchyk, O., Illarionova, Т., Buzun, A., Paliy, A. and Palii, A. (2022) ‘Influence of probiotic microorganisms on microbial biofilms in feeds’, Scientific Horizons, 25(1), pp. 41–50. doi: 10.48077/scihor.25(1).2022.41-50.

Kotowicz, N., Bhardwaj, R. K., Ferreira, W. T., Hong, H. A., Olender, A., Ramirez, J. and Cutting, S. M. (2019) ‘Safety and probiotic evaluation of two Bacillus strains producing antioxidant compounds’, Beneficial Microbes, 10(7), pp. 759–772. doi: 10.3920/BM2019.0040.

Mardonov, I., Azimova, N., Turaeva, S., Nazarova, M., Kobilov, F., Abdullaev, A. and Khalilov, I. (2021) ‘Antifungal and antibacterial activity of bacteria of Bacillus thuringiensis strains against to phytopathogenic microorganisms’ [Antifungal’naya i antibakterial’naya aktivnostbakteriy shtammov Bacillus thuringiensis protiv fitopatogennykh mikroorganizmov], Universum: Chemistry and Biology [Universum: Khimiya i biologiya], 12, p. 12705. doi: 10.32743/UniChem.2021.90.12.12705.

Petrova, O. E. and Sauer, K. (2016) ‘Escaping the biofilm in more than one way: Desorption, detachment or dispersion’, Current Opinion in Microbiology, 30, pp. 67–78. doi: 10.1016/j.mib.2016.01.004.

Sidorova, S. G. (2020) ‘Antifungal activity of soil bacteria against some micotic agents of tomato’ [Antifungal’naya aktivnostpochvennykh bakteriy v otnoshenii nekotorykh vozbuditeley mikozov tomata], Vegetable Growing [Ovoshchevodstvo], 28, pp. 124–135. Available at: https://veget.belal.by/jour/article/view/107. [in Russian].

Sumi, C. D., Yang, B. W., Yeo, I.-C. and Hahm, Y. T. (2015) ‘Antimicrobial peptides of the genus Bacillus: A new era for antibiotics’, Canadian Journal of Microbiology, 61(2), pp. 93–103. doi: 10.1139/cjm-2014-0613.