Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 10, Issue 2, June 2024, Pages 30–34

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

INTERFERENCE BETWEEN MOSQUITO DENSONUCLEOSIS VIRUS AND CERTAIN ARBOVIRUSES

Buchatsky L. P. 1, Biletska H. V. 2, Kononko H. G. 1, Vynohrad N. O. 2

1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, e-mail: iridolpb@gmail.com

2 Danylo Halytsky Lviv National Medical University, Lviv, Ukraine

Download PDF (print version)

Citation for print version: Buchatsky, L. P., Biletska, H. V., Kononko, H. G. and Vynohrad, N. O. (2024) ‘Interference between mosquito densonucleosis virus and certain arboviruses’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 10(2), pp. 30–34.

Download PDF (online version)

Citation for online version: Buchatsky, L. P., Biletska, H. V., Kononko, H. G. and Vynohrad, N. O. (2024) ‘Interference between mosquito densonucleosis virus and certain arboviruses’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 10(2), pp. 30–34. DOI: 10.36016/JVMBBS-2024-10-2-6.

Summary. The active ingredient of the preparation Viroden, developed in Ukraine, is the mosquito densovirus. This virus has a wide tissue tropism and affects all phases of ontogenesis. It reproduces itself in the mosquito’s salivary gland cells, but unlike arboviruses, it is harmless for humans and vertebrates. It is well established that simultaneous infection of an insect with different viruses is often accompanied by the phenomenon of interference, whereby the reproduction of one or both viruses is suppressed in the insect’s body. Consequently, it was reasonable to investigate the results of concurrent infection with an arbovirus and a mosquito densovirus. Laboratory experiments demonstrated that mosquito densovirus suppressed the reproduction of West Nile, Sindbis, and Batai viruses in the mosquito’s body, resulting in a significant decrease in their infective titers as well as a reduction in the transmission factor during blood-feeding. The relevance of this research is determined by the increasing levels of biological threats posed by zoonotic transmissible viral infections common to humans and animals. According to the predictions of experts, in light of the processes of globalization and climate change, this may result in the emergence of new pandemics and panzootics

Keywords: mosquito densovirus, West Nile virus, Sindbis virus, Batai virus

References:

Barreau, C., Jousset, F.-X. and Cornet, M. (1994) ‘An efficient and easy method of infection of mosquito larvae from virus-contaminated cell cultures’, Journal of Virological Methods, 49(2), pp. 153–156. doi: 10.1016/0166-0934(94)90039-6.

Boublik, Y., Jousset, F.-X. and Bergoin, M. (1994) ‘Complete nucleotide sequence and genomic organization of the Aedes albopictus parvovirus (AaPV) pathogenic for Aedes aegypti larvae’, Virology, 200(2), pp. 752–763. doi: 10.1006/viro.1994.1239.

Buchatsky, L. P. (1989) ‘Densonucleosis of bloodsucking mosquitoes’, Diseases of Aquatic Organisms, 6, pp. 145–150. Available at: https://www.int-res.com/articles/dao/6/d006p145.pdf.

Buchatsky, L. P. and Filenko, O. M. (1988) ‘Certain physico-chemical properties of mosquito densonucleosis virus DNA’ [Nekotorye fiziko-khimicheskie svoystva DNK virusa densonukleoza komarov], Biopolymers and Cell [Biopolimery i kletka], 4(5), pp. 254–258. doi: 10.7124/bc.000234. [in Russian].

Buchatsky, L. P., Kuznetsova, M. A., Lebedinets, N. N. and Kononko, A. G. (1987) ‘Development and basic properties of a virus preparation Viroden’ [Razrabotka i osnovnye svoistva virusnogo preparata Viroden], Problems of Virology [Voprosy virusologii], 32(6), pp. 729–733. Available at: https://www.elibrary.ru/item.asp?id=27735942. [in Russian].

Carlson, J., Suchman, E. and Buchatsky, L. (2006) ‘Densoviruses for control and genetic manipulation of mosquitoes’, in Advances in Virus Research. Elsevier, pp. 361–392. doi: 10.1016/S0065-3527(06)68010-X.

Cataneo, A. H. D., Kuczera, D., Mosimann, A. L. P., Silva, E. G., Ferreira, Á. G. A., Marques, J. T., Wowk, P. F., Santos, C. N. D. D. and Bordignon, J. (2019) ‘Detection and clearance of a mosquito densovirus contaminant from laboratory stocks of Zika virus’, Memórias do Instituto Oswaldo Cruz, 114, p. e180432. doi: 10.1590/0074-02760180432.

Cotmore, S. F., Agbandje-McKenna, M., Chiorini, J. A., Mukha, D. V., Pintel, D. J., Qiu, J., Soderlund-Venermo, M., Tattersall, P., Tijssen, P., Gatherer, D. and Davison, A. J. (2014) ‘The family Parvoviridae’, Archives of Virology, 159(5), pp. 1239–1247. doi: 10.1007/s00705-013-1914-1.

Ekodiia. (2020) Climate Change in Ukraine and the World: Causes, Consequences and Solutions for Countermeasures [Zmina klimatu v Ukraini ta sviti: prychyny, naslidky ta rishennia dlia protydii]. Available at: https://ecoaction.org.ua/zmina-klimatu-ua-ta-svit.html. [in Ukrainian].

Ferreira, R. S., Da Cruz, L. C. T. A., De Souza, V. J., Da Silva Neves, N. A., De Souza, V. C., Filho, L. C. F., Da Silva Lemos, P., De Lima, C. P. S., Naveca, F. G., Atanaka, M., Nunes, M. R. T. and Slhessarenko, R. D. (2020) ‘Insect-specific viruses and arboviruses in adult male culicids from Midwestern Brazil’, Infection, Genetics and Evolution, 85, p. 104561. doi: 10.1016/j.meegid.2020.104561.

Galev, E. E., Afanas’ev, B. N., Buchatsky, L. P., Kozlov, Yu. V. and Baev, A. A. (1989) ‘Features of the organization of the densovirus genome’ [Osobennosti organizatsii genoma densovirusov], Reports of the Academy of Sciences of the USSR [Doklady Akademii nauk SSSR], 307(4), pp. 996–1000. PMID: 2583005. [in Russian].

Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K., Damm, A., Sakalli, A. and Van Vliet, M. T. H. (2018) ‘Climate impacts in Europe under +1.5°C global warming’, Earth’s Future, 6(2), pp. 264–285. doi: 10.1002/2017EF000710.

Jousset, F.-X., Baquerizo, E. and Bergoin, M. (2000) ‘A new densovirus isolated from the mosquito Culex pipiens (Diptera: Culicidae)’, Virus Research, 67(1), pp. 11–16. doi: 10.1016/S0168-1702(00)00128-3.

Jousset, F.-X., Barreau, C., Boublik, Y. and Cornet, M. (1993) ‘A Parvo-like virus persistently infecting a C6/36 clone of Aedes albopictus mosquito cell line and pathogenic for Aedes aegypti larvae’, Virus Research, 29(2), pp. 99–114. doi: 10.1016/0168-1702(93)90052-O.

Kelly, D. C. (1980) ‘Supression of baculovirus and iridescent virus replication in dually infected cells’, Microbiologica, 3, pp. 177–185.

Kittayapong, P., Baisley, K. J. and O’Neill, S. L. (1999) ‘A mosquito densovirus infecting Aedes aegypti and Aedes albopictus from Thailand’, American Journal of Tropical Medicine and Hygiene, 61(4), pp. 612–617. doi: 10.4269/ajtmh.1999.61.612.

Kuznetsova, M. A. and Buchatsky, L. P. (1988) ‘Effect of the viral preparation viroden on Aedes aegypti L. mosquitoes in an experiment’ [Vliianie virusnogo preparata virodena na komarov Aedes aegypti L. v eksperimente], Medical Parasitology and Parasitic Diseases [Meditsinskaia parazitologiia i parazitarnye bolezni], 3, pp. 52–54. PMID: 3173248. [in Russian].

Lebedeva, O. P., Kuznetsova, M. A., Zelenko, A. P. and Gudz-Gorban, A. P. (1973) ‘Investigation of a virus disease of the Densonucleosis type in a laboratory culture of Aedes aegypti’, Acta Virologica, 17(3), pp. 253–256. PMID: 4125849.

Lebedinets, N. N., Vasi’ieva, V. L. and Buchatsky, L. P. (1976) ‘Effect of the densonucleosis virus of the mosquito Aedes aegypti L. on vertebrate animals’ [Deystvie virusa densonukleoza komara na pozvonochnykh zhivotnykh], Medical Parasitology and Parasitic Diseases [Meditsinskaia parazitologiia i parazitarnye bolezni], 1, pp. 95–97. PMID: 1264036. [in Russian].

Lebedinets, N. N., Tsarichkova, D. B., Karpenko, L. V., Kononko, A. G. and Buchatsky, L. P. (1978) ‘Study of the Aedes aegypti L. Densonucleosis virus effect on preimaginal stages of different species of blood-sucking mosquitoes’ [Izuchenie deystviia virusa densonukleoza komara Aedes aegypti L. na preimaginal’nye stadii raznykh vidov krovososyshchikh komarov], Microbiological Journal [Mikrobiolohichnyi Zhurnal], 40(3), pp. 352–356. PMID: 28461. [in Russian].

Li, J., Dong, Y., Sun, Y., Lai, Z., Zhao, Y., Liu, P., Gao, Y., Chen, X. and Gu, J. (2019) ‘A novel densovirus isolated from the Asian tiger mosquito displays varied pathogenicity depending on its host species’, Frontiers in Microbiology, 10, p. 1549. doi: 10.3389/fmicb.2019.01549.

Mosimann, A. L. P., Bordignon, J., Mazzarotto, G. C. A., Motta, M. C. M., Hoffmann, F. and Santos, C. N. D. D. (2011) ‘Genetic and biological characterization of a densovirus isolate that affects dengue virus infection’, Memórias do Instituto Oswaldo Cruz, 106(3), pp. 285–292. doi: 10.1590/S0074-02762011000300006.

Pattanakitsakul, S. N., Boonnak, K., Auethavornanan, K., Jairungsri, A., Duangjinda, T., Puttatesk, P., Thongrungkiat, S. and Malasit, P. (2007) ‘A new densovirus isolated from the mosquito Toxorhynchites splendens (Wiedemann) (Diptera: Culicidae)’, Southeast Asian Journal of Tropical Medicine and Public Health, 38(2), pp. 283–293. PMID: 17539278.

Rwegoshora, R. T., Baisley, K. J. and Kittayapong, P. (2000) ‘Seasonal and spatial variation in natural densovirus infection in Anopheles minimus s. l. in Thailand’, Southeast Asian Journal of Tropical Medicine and Public Health, 31(1), pp. 3–9. PMID: 11023056.

Sivaram, A., Barde, P. V., Kumar, S. R. P., Yadav, P., Gokhale, M. D., Basu, A. and Mourya, D. T. (2009) ‘Isolation and characterization of Densonucleosis virus from Aedes aegypti mosquitoes and its distribution in India’, Intervirology, 52(1), pp. 1–7. doi: 10.1159/000210044.

Suchman, E. L., Kononko, A., Plake, E., Doehling, M., Kleker, B., Black, W. C., Buchatsky, L. and Carlson, J. (2006) ‘Effects of AeDNV infection on Aedes aegypti lifespan and reproduction’, Biological Control, 39(3), pp. 465–473. doi: 10.1016/j.biocontrol.2006.05.001.

Van Emden, H. F. (2019) Statistics for Terrified Biologists. 2nd ed. Hoboken, NJ: John Wiley & Sons. ISBN 9781119563679.

Vasil’eva, V. L., Lebedinets, N. N., Gurval’, A. L., Chigir’, T. V., Buchatsky, L. P. and Kuznetsova, M. A. (1990) ‘The safety of the preparation viroden for vertebrate animals’ [Issledovanie bezopasnosti preparata virodena dlia pozvonochnykh zhivotnykh], Microbiological Journal [Mikrobiolohichnyi Zhurnal], 52(6), pp. 73–79. PMID: 1711146. [in Russian].

Vynohrad, N. O. and Shul, Yu. A. (2021) ‘Forecasting the modification of natural mosquito-borne foci of extremely dangerous infections in Ukraine under the influence of climate change’ [Prohnozuvannia modyfikatsii pryrodnykh komarynykh oseredkiv osoblyvo nebezpechnykh infektsii v Ukraini pid vplyvom klimatychnykh zmin], Infection Diseases [Infektsiini khvoroby], 3, pp. 4–12. doi: 10.11603/1681-2727.2021.3.12444. [in Ukrainian].

Vynohrad, I. A., Biletska, H. V., Lozynskyi, I. M., Yartys, O. S., Omelchenko, O. O., Plastunov, V. A., Kozlovskyi, M. M. and Rohochyi, Ye. H. (1994) ‘Arboviruses in Ukraine: prevalence, ecology, role in human infectious pathology’ [Arbovirusy v Ukraini: poshyrennist, ekolohiia, rol v infektsiinii patolohii liudyny], Microbiological Journal [Mikrobiolohichnyi Zhurnal], 56(5), p. 70. [in Ukrainian].

Vynohrad, I. A., Lozynskyi, I. M., Biletska, H. V. and Kozlovskyi, M. M. (1996) ‘Tick-borne encephalitis and other arboviral infections in Ukraine’ [Klishchovyi entsefalit ta inshi arbovirusni infektsii v Ukraini], Infection Diseases [Infektsiini khvoroby], 4, pp. 9–13. [in Ukrainian].

Zhai, Y., Lv, X., Sun, X., Fu, S., Gong, Z., Fen, Y., Tong, S., Wang, Z., Tang, Q., Attoui, H. and Liang, G. (2008) ‘Isolation and characterization of the full coding sequence of a novel densovirus from the mosquito Culex pipiens pallens’, Journal of General Virology, 89(1), pp. 195–199. doi: 10.1099/vir.0.83221-0.