Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
10, Issue 2, June 2024, Pages 30–34
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
INTERFERENCE
BETWEEN MOSQUITO DENSONUCLEOSIS VIRUS AND CERTAIN ARBOVIRUSES
Buchatsky L. P. 1,
Biletska H. V. 2, Kononko H. G. 1,
Vynohrad N. O. 2
1 Taras
Shevchenko National University of Kyiv, Kyiv, Ukraine, e-mail: iridolpb@gmail.com
2 Danylo
Halytsky Lviv National Medical University, Lviv, Ukraine
Download
PDF (print version)
Citation for print version: Buchatsky, L. P.,
Biletska, H. V., Kononko, H. G. and Vynohrad, N. O.
(2024) ‘Interference between
mosquito densonucleosis virus and certain arboviruses’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 10(2), pp. 30–34.
Download
PDF (online version)
Citation for online version: Buchatsky, L. P.,
Biletska, H. V., Kononko, H. G. and Vynohrad, N. O.
(2024) ‘Interference between
mosquito densonucleosis virus and certain arboviruses’, Journal for Veterinary Medicine, Biotechnology and
Biosafety. [Online] 10(2), pp. 30–34. DOI: 10.36016/JVMBBS-2024-10-2-6.
Summary. The active ingredient of the preparation Viroden,
developed in Ukraine, is the mosquito densovirus. This virus has a wide tissue
tropism and affects all phases of ontogenesis. It reproduces itself in the
mosquito’s salivary gland cells, but unlike arboviruses, it is harmless
for humans and vertebrates. It is well established
that simultaneous infection of an insect with different viruses is often
accompanied by the phenomenon of interference, whereby the reproduction of one
or both viruses is suppressed in the insect’s body. Consequently, it was
reasonable to investigate the results of concurrent infection with an arbovirus
and a mosquito densovirus. Laboratory experiments demonstrated that mosquito
densovirus suppressed the reproduction of West Nile, Sindbis, and Batai viruses
in the mosquito’s body, resulting in a significant decrease in their
infective titers as well as a reduction in the transmission factor during blood-feeding. The relevance of this research is determined
by the increasing levels of biological threats posed by zoonotic transmissible
viral infections common to humans and animals. According to the predictions of
experts, in light of the processes of globalization and climate change, this
may result in the emergence of new pandemics and panzootics
Keywords: mosquito
densovirus, West Nile virus, Sindbis virus, Batai virus
References:
Barreau, C.,
Jousset, F.-X. and Cornet, M. (1994) ‘An efficient and easy
method of infection of mosquito larvae from virus-contaminated cell
cultures’, Journal of Virological Methods, 49(2),
pp. 153–156. doi: 10.1016/0166-0934(94)90039-6.
Boublik, Y., Jousset, F.-X. and Bergoin, M. (1994) ‘Complete nucleotide
sequence and genomic organization of the Aedes
albopictus parvovirus (AaPV) pathogenic for Aedes aegypti larvae’, Virology, 200(2),
pp. 752–763. doi: 10.1006/viro.1994.1239.
Buchatsky, L. P. (1989) ‘Densonucleosis
of bloodsucking mosquitoes’, Diseases of Aquatic Organisms, 6,
pp. 145–150. Available at: https://www.int-res.com/articles/dao/6/d006p145.pdf.
Buchatsky, L. P. and Filenko, O. M.
(1988) ‘Certain physico-chemical properties of mosquito densonucleosis
virus DNA’ [Nekotorye fiziko-khimicheskie svoystva DNK virusa
densonukleoza komarov], Biopolymers and Cell [Biopolimery i kletka],
4(5), pp. 254–258. doi: 10.7124/bc.000234. [in Russian].
Buchatsky, L. P.,
Kuznetsova, M. A., Lebedinets, N. N. and
Kononko, A. G. (1987) ‘Development and basic properties of a
virus preparation Viroden’ [Razrabotka i osnovnye svoistva virusnogo
preparata Viroden], Problems of Virology [Voprosy virusologii], 32(6),
pp. 729–733. Available at: https://www.elibrary.ru/item.asp?id=27735942. [in Russian].
Carlson, J., Suchman, E. and
Buchatsky, L. (2006) ‘Densoviruses for control and genetic
manipulation of mosquitoes’, in Advances in Virus Research. Elsevier,
pp. 361–392. doi: 10.1016/S0065-3527(06)68010-X.
Cataneo, A. H. D., Kuczera, D.,
Mosimann, A. L. P., Silva, E. G.,
Ferreira, Á. G. A., Marques, J. T.,
Wowk, P. F., Santos, C. N. D. D. and
Bordignon, J. (2019) ‘Detection and clearance of a mosquito
densovirus contaminant from laboratory stocks of Zika virus’, Memórias
do Instituto Oswaldo Cruz, 114, p. e180432. doi:
10.1590/0074-02760180432.
Cotmore, S. F., Agbandje-McKenna, M.,
Chiorini, J. A., Mukha, D. V., Pintel, D. J.,
Qiu, J., Soderlund-Venermo, M., Tattersall, P.,
Tijssen, P., Gatherer, D. and Davison, A. J. (2014)
‘The family Parvoviridae’, Archives of Virology, 159(5),
pp. 1239–1247. doi: 10.1007/s00705-013-1914-1.
Ekodiia. (2020) Climate
Change in Ukraine and the World: Causes, Consequences and Solutions for
Countermeasures [Zmina klimatu v Ukraini ta sviti: prychyny, naslidky ta
rishennia dlia protydii].
Available at: https://ecoaction.org.ua/zmina-klimatu-ua-ta-svit.html. [in Ukrainian].
Ferreira, R. S.,
Da Cruz, L. C. T. A., De Souza, V. J.,
Da Silva Neves, N. A., De Souza, V. C.,
Filho, L. C. F., Da Silva Lemos, P.,
De Lima, C. P. S., Naveca, F. G.,
Atanaka, M., Nunes, M. R. T. and Slhessarenko, R. D.
(2020) ‘Insect-specific viruses and arboviruses in adult male culicids
from Midwestern Brazil’, Infection, Genetics and Evolution, 85,
p. 104561. doi: 10.1016/j.meegid.2020.104561.
Galev, E. E.,
Afanas’ev, B. N., Buchatsky, L. P.,
Kozlov, Yu. V. and Baev, A. A. (1989) ‘Features of
the organization of the densovirus genome’ [Osobennosti organizatsii
genoma densovirusov], Reports of the
Academy of Sciences of the USSR [Doklady Akademii nauk SSSR], 307(4),
pp. 996–1000. PMID: 2583005. [in Russian].
Jacob, D., Kotova, L.,
Teichmann, C., Sobolowski, S. P., Vautard, R.,
Donnelly, C., Koutroulis, A. G., Grillakis, M. G.,
Tsanis, I. K., Damm, A., Sakalli, A. and Van Vliet, M. T. H.
(2018) ‘Climate impacts in Europe under +1.5°C global warming’,
Earth’s Future, 6(2), pp. 264–285. doi:
10.1002/2017EF000710.
Jousset, F.-X., Baquerizo, E. and
Bergoin, M. (2000) ‘A new densovirus isolated from the mosquito Culex pipiens (Diptera:
Culicidae)’, Virus Research, 67(1), pp. 11–16. doi: 10.1016/S0168-1702(00)00128-3.
Jousset, F.-X., Barreau, C.,
Boublik, Y. and Cornet, M. (1993) ‘A Parvo-like virus
persistently infecting a C6/36 clone of Aedes
albopictus mosquito cell line and pathogenic for Aedes aegypti larvae’, Virus Research, 29(2),
pp. 99–114. doi: 10.1016/0168-1702(93)90052-O.
Kelly, D. C. (1980) ‘Supression of
baculovirus and iridescent virus replication in dually infected cells’, Microbiologica,
3, pp. 177–185.
Kittayapong, P., Baisley, K. J. and
O’Neill, S. L. (1999) ‘A mosquito densovirus infecting Aedes aegypti and Aedes albopictus from Thailand’, American Journal of
Tropical Medicine and Hygiene, 61(4), pp. 612–617. doi: 10.4269/ajtmh.1999.61.612.
Kuznetsova, M. A. and
Buchatsky, L. P. (1988) ‘Effect of the viral preparation
viroden on Aedes aegypti L.
mosquitoes in an experiment’ [Vliianie virusnogo preparata virodena na
komarov Aedes aegypti L. v
eksperimente], Medical Parasitology and
Parasitic Diseases [Meditsinskaia
parazitologiia i parazitarnye bolezni], 3, pp. 52–54.
PMID: 3173248. [in Russian].
Lebedeva, O. P.,
Kuznetsova, M. A., Zelenko, A. P. and
Gudz-Gorban, A. P. (1973) ‘Investigation of a virus disease of
the Densonucleosis type in a laboratory culture of Aedes aegypti’, Acta Virologica, 17(3), pp. 253–256. PMID: 4125849.
Lebedinets, N. N.,
Vasi’ieva, V. L. and Buchatsky, L. P. (1976)
‘Effect of the densonucleosis virus of the mosquito Aedes aegypti L. on vertebrate animals’ [Deystvie virusa
densonukleoza komara na pozvonochnykh zhivotnykh], Medical Parasitology and Parasitic Diseases [Meditsinskaia parazitologiia i parazitarnye bolezni], 1,
pp. 95–97. PMID: 1264036. [in Russian].
Lebedinets, N. N.,
Tsarichkova, D. B., Karpenko, L. V.,
Kononko, A. G. and Buchatsky, L. P. (1978) ‘Study of
the Aedes aegypti L. Densonucleosis
virus effect on preimaginal stages of different species of blood-sucking
mosquitoes’ [Izuchenie deystviia virusa densonukleoza komara Aedes aegypti L. na
preimaginal’nye stadii raznykh vidov krovososyshchikh komarov], Microbiological
Journal [Mikrobiolohichnyi Zhurnal], 40(3),
pp. 352–356. PMID: 28461. [in Russian].
Li, J., Dong, Y., Sun, Y.,
Lai, Z., Zhao, Y., Liu, P., Gao, Y., Chen, X. and
Gu, J. (2019) ‘A novel densovirus isolated from the Asian tiger
mosquito displays varied pathogenicity depending on its host species’, Frontiers
in Microbiology, 10, p. 1549. doi: 10.3389/fmicb.2019.01549.
Mosimann, A. L. P., Bordignon, J.,
Mazzarotto, G. C. A., Motta, M. C. M.,
Hoffmann, F. and Santos, C. N. D. D. (2011)
‘Genetic and biological characterization of a densovirus isolate that
affects dengue virus infection’, Memórias do Instituto Oswaldo
Cruz, 106(3), pp. 285–292. doi: 10.1590/S0074-02762011000300006.
Pattanakitsakul, S. N., Boonnak, K.,
Auethavornanan, K., Jairungsri, A., Duangjinda, T.,
Puttatesk, P., Thongrungkiat, S. and Malasit, P. (2007) ‘A
new densovirus isolated from the mosquito Toxorhynchites
splendens (Wiedemann) (Diptera: Culicidae)’, Southeast Asian
Journal of Tropical Medicine and Public Health, 38(2), pp. 283–293. PMID: 17539278.
Rwegoshora, R. T., Baisley, K. J.
and Kittayapong, P. (2000) ‘Seasonal and spatial variation in
natural densovirus infection in Anopheles
minimus s. l. in Thailand’, Southeast Asian Journal of
Tropical Medicine and Public Health, 31(1),
pp. 3–9. PMID: 11023056.
Sivaram, A., Barde, P. V.,
Kumar, S. R. P., Yadav, P., Gokhale, M. D.,
Basu, A. and Mourya, D. T. (2009) ‘Isolation and
characterization of Densonucleosis virus from Aedes aegypti mosquitoes
and its distribution in India’, Intervirology, 52(1),
pp. 1–7. doi: 10.1159/000210044.
Suchman, E. L., Kononko, A.,
Plake, E., Doehling, M., Kleker, B., Black, W. C.,
Buchatsky, L. and Carlson, J. (2006) ‘Effects of AeDNV
infection on Aedes aegypti lifespan
and reproduction’, Biological Control, 39(3),
pp. 465–473. doi: 10.1016/j.biocontrol.2006.05.001.
Van Emden, H. F. (2019) Statistics for Terrified Biologists. 2nd ed.
Hoboken, NJ: John Wiley & Sons. ISBN 9781119563679.
Vasil’eva, V. L.,
Lebedinets, N. N., Gurval’, A. L.,
Chigir’, T. V., Buchatsky, L. P. and
Kuznetsova, M. A. (1990) ‘The safety of the preparation viroden
for vertebrate animals’ [Issledovanie bezopasnosti preparata virodena
dlia pozvonochnykh zhivotnykh], Microbiological Journal [Mikrobiolohichnyi
Zhurnal], 52(6),
pp. 73–79. PMID: 1711146. [in Russian].
Vynohrad, N. O. and Shul, Yu. A.
(2021) ‘Forecasting the modification of natural mosquito-borne foci of
extremely dangerous infections in Ukraine under the influence of climate
change’ [Prohnozuvannia modyfikatsii pryrodnykh komarynykh oseredkiv
osoblyvo nebezpechnykh infektsii v Ukraini pid vplyvom
klimatychnykh zmin], Infection Diseases [Infektsiini khvoroby],
3, pp. 4–12. doi: 10.11603/1681-2727.2021.3.12444. [in Ukrainian].
Vynohrad, I. A., Biletska, H. V.,
Lozynskyi, I. M., Yartys, O. S.,
Omelchenko, O. O., Plastunov, V. A.,
Kozlovskyi, M. M. and Rohochyi, Ye. H. (1994)
‘Arboviruses in Ukraine: prevalence, ecology, role in human infectious
pathology’ [Arbovirusy v Ukraini: poshyrennist, ekolohiia, rol v
infektsiinii patolohii liudyny], Microbiological Journal [Mikrobiolohichnyi
Zhurnal], 56(5), p. 70. [in Ukrainian].
Vynohrad, I. A.,
Lozynskyi, I. M., Biletska, H. V. and
Kozlovskyi, M. M. (1996) ‘Tick-borne encephalitis and other
arboviral infections in Ukraine’ [Klishchovyi entsefalit ta inshi
arbovirusni infektsii v Ukraini], Infection Diseases [Infektsiini
khvoroby], 4, pp. 9–13. [in Ukrainian].
Zhai, Y., Lv, X., Sun, X.,
Fu, S., Gong, Z., Fen, Y., Tong, S., Wang, Z.,
Tang, Q., Attoui, H. and Liang, G. (2008) ‘Isolation and
characterization of the full coding sequence of a novel densovirus from the
mosquito Culex pipiens pallens’,
Journal of General Virology, 89(1), pp. 195–199. doi: 10.1099/vir.0.83221-0.