Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
10, Issue 3, September 2024, Pages 37–42
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
MICROBIAL LOAD OF
FACILITIES FOR KEEPING PIGS OF DIFFERENT PRODUCTION GROUPS
Myronchuk V. O., Peleno R. A.
Stepan Gzhytskyi National
University of Veterinary Medicine and Biotechnologies of Lviv, Lviv, Ukraine,
e-mail: vitaliy.myronchuk@gmail.com
Download
PDF (print version)
Citation for print version: Myronchuk, V. O.
and Peleno, R. A. (2024) ‘Microbial load of facilities for keeping pigs of different production
groups’, Journal
for Veterinary Medicine, Biotechnology and Biosafety, 10(3),
pp. 37–42.
Download
PDF (online version)
Citation for online version: Myronchuk, V. O.
and Peleno, R. A. (2024) ‘Microbial load of facilities for keeping pigs of different production
groups’, Journal
for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 10(3), pp. 37–42. DOI: 10.36016/JVMBBS-2024-10-3-6.
Summary. The study analyzed the
microbial load of objects in the facilities where pigs of different production
groups were kept at the final stage of production
cycles, immediately before disinfection measures. The study found that the
number of mesophilic aerobic and facultative anaerobic microorganisms (MAFAnM)
in the swabs from the surfaces of the studied objects varied from 5.00 to
6.88 log CFU/cm³. The lowest quantity of bacteria was found on drinkers and feeders, while the highest
quantity was on the facilities’ floor. The average level of microbial
load in the facilities for keeping sows, farrowing, and growing piglets ranged
from 5.91 to 6.07 log CFU/cm³. The highest values were observed for the study of swabs taken in the
piglet-rearing facility. The proportion of field isolates of the rod, cocci,
and spiral shapes of microorganisms in the rearing facility was 62.1%, 28.8%,
and 9.1%, respectively, in the farrowing facility — 63.9%, 29.2%,
and 6.9%, and in the sow housing facility — 66.2%, 26%, and 7.8%. Escherichia
coli was dominant in the rearing facility — 13.9% of isolates, Proteus
mirabilis, Bacillus subtilis, and Campylobacter jejuni —
9.7% each, and Citrobacter freundii, Enterococcus faecalis, and Enterococcus
faecium — 8.3% each. In farrowing facilities, the proportion of E. coli
isolates was 16.6%. 7.5% fewer isolates belonged to B. subtilis,
Streptococcus salivarius, and C. jejuni, and 9% fewer
isolates belonged to Klebsiella pneumoniae, P. mirabilis, E. faecalis,
and E. faecium. In the sow housing facility, the proportion of E. coli
isolates was 12.9%, the number of P. mirabilis isolates was 1.2%
less, and C. freundii was 3.8% less
Keywords: MAFAnM,
contamination, disinfection
References:
Bolibrukh, M. and
Rublenko, I. (2023) ‘Influence of factors on the gastrointestinal
microbiota of pigs’, Ukrainian Journal of Veterinary and Agricultural
Sciences, 6(1), pp. 68–71. doi: 10.32718/ujvas6-1.11.
Buoio, E.,
Cialini, C. and Costa, A. (2023) ‘Air quality assessment in pig
farming: The Italian ClassyFarm’, Animals, 13(14), p. 2297. doi: 10.3390/ani13142297.
Ferone, M.,
Gowen, A., Fanning, S. and Scannell, A. G. M. (2020)
‘Microbial detection and identification methods: Bench top assays to
omics approaches’, Comprehensive Reviews in Food Science and Food
Safety, 19(6), pp. 3106–3129. doi: 10.1111/1541-4337.12618.
Fischer, J.,
Hille, K., Mellmann, A., Schaumburg, F., Kreienbrock, L.
and Köck, R. (2016) ‘Low-level antimicrobial resistance of
Enterobacteriaceae isolated from the nares of pig-exposed persons’, Epidemiology
and Infection, 144(4), pp. 686–690. doi:
10.1017/S0950268815001776.
Garrity, G. M.,
Brenner, D. J., Krieg, N. R. and Staley, J. T.
(eds.) (2005a) Bergey’s Manual of
Systematic Bacteriology, Vol. 2: The Proteobacteria, Part B: The
Gammaproteobacteria. 2nd ed. New York,
NY, USA: Springer. doi: 10.1007/0-387-28022-7.
Garrity, G. M.,
Brenner, D. J., Krieg, N. R. and Staley, J. T.
(eds.) (2005b) Bergey’s Manual of
Systematic Bacteriology, Vol. 2: The Proteobacteria, Part C: The
Alpha-, Beta-, Delta-, and Epsilonproteobacteria. 2nd ed. New York, NY, USA: Springer. doi:
10.1007/0-387-29298-5.
Haidukevych, S.
and Semenova, N. (2023) ‘Modernization of the installation to ensure
comfortable conditions for keeping pigs’ [Modernizatsiia ustanovky dlia
zabezpechennia komfortnykh umov utrymannia svynei], Electromechanical and Energy
Saving Systems [Elektromekhanichni i enerhozberihaiuchi systemy], (4),
pp. 46–56. doi: 10.32782/2072-2052.2023.4.63.5. [in Ukrainian].
ISO
(International Organization for Standardization) (2004) ISO 7932:2004
Microbiology of Food and Animal Feeding Stuffs — Horizontal Method
for the Enumeration of Presumptive Bacillus cereus — Colony-count
Technique at 30 Degrees C. Geneva: ISO. Available at: https://www.iso.org/standard/38219.html.
ISO
(International Organization for Standardization) (2006) ISO 16266:2006 Water
Quality — Detection and Enumeration of Pseudomonas
aeruginosa — Method by Membrane Filtration. Geneva: ISO.
Available at: https://www.iso.org/standard/39272.html.
ISO
(International Organization for Standardization) (2010) ISO 13720:2010 Meat
and Meat Products — Enumeration of Presumptive Pseudomonas spp.
Geneva: ISO. Available at: https://www.iso.org/standard/45099.html.
ISO
(International Organization for Standardization) (2017a) ISO 10272-1:2017
Microbiology of the Food Chain — Horizontal Method for Detection and
Enumeration of Campylobacter spp. — Part 1: Detection
Method. Geneva: ISO. Available at: https://www.iso.org/standard/63225.html.
ISO (International Organization for Standardization) (2017b) ISO
21528-1:2017 Microbiology of the Food Chain — Horizontal
Method for the Detection and Enumeration of Enterobacteriaceae —
Part 1: Detection of Enterobacteriaceae. Geneva: ISO. Available at: https://www.iso.org/standard/55228.html.
ISO
(International Organization for Standardization) (2023) ISO 15213-2:2023
Microbiology of the Food Chain — Horizontal Method for the Detection
and Enumeration of Clostridium spp. — Part 2: Enumeration
of Clostridium perfringens by Colony-count Technique. Geneva: ISO.
Available at: https://www.iso.org/standard/71498.html.
Kot, S. P.,
Bondar, A. O., Starodubets, O. O.,
Kotsyubenko, H. A. and Poruchnyk, M. M. (2019)
‘Sanitary-hygenic assessment of keeping lactating sows’ [Sanitarno-hihiienichna
otsinka utrymannia pidsysnykh svynomatok], Livestock of Ukraine
[Tvarynnytstvo Ukrainy], (1), pp. 13–21. Available at: http://dspace.mnau.edu.ua/jspui/handle/123456789/5611. [in Ukrainian].
Luiken, R. E. C.,
Van Gompel, L., Bossers, A., Munk, P., Joosten, P.,
Hansen, R. B., Knudsen, B. E.,
García-Cobos, S., Dewulf, J., Aarestrup, F. M.,
Wagenaar, J. A., Smit, L. A. M., Mevius, D. J.,
Heederik, D. J. J. and Schmitt, H. (2020) ‘Farm dust
resistomes and bacterial microbiomes in European poultry and pig farms’, Environment
International, 143, p. 105971. doi: 10.1016/j.envint.2020.105971.
Luyckx, K.,
Millet, S., Van Weyenberg, S., Herman, L.,
Heyndrickx, M., Dewulf, J. and De Reu, K. (2016)
‘Comparison of competitive exclusion with classical cleaning and
disinfection on bacterial load in pig nursery units’, BMC Veterinary
Research, 12(1), p. 189. doi: 10.1186/s12917-016-0810-9.
MHU (Ministry of
Health of Ukraine) (2023) Hygienic
Regulations of Chemicals in the Air of the Working Area [Hihiienichni rehlamenty
khimichnykh rechovyn u povitri robochoi zony]. Available at: https://zakon.rada.gov.ua/laws/z0741-20#n59. [in Ukrainian].
Myronchuk, V. O.
and Peleno, R. A. (2023) ‘The role of pre-disinfection measures
in reducing the microbial load of pig house facilities’ [Rol
pereddezinfektsiinykh zakhodiv u znyzhenni mikrobnoho navantazhennia
ob’iektiv svynarnyka], Scientific Messenger of Lviv National
University of Veterinary Medicine and Biotechnologies named after
S. Z. Gzhytskyj. Series: Veterinary Medicine [Naukovyi visnyk
Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii
imeni S. Z. Gzhytskoho. Seriia: Veterynarna Medycyna], 25(112),
pp. 212–215. doi: 10.32718/nvlvet11233. [in Ukrainian].
Nebylytsia, M.,
Boiko, O., Gavrish, O. and Sotnichenko, Y. (2023)
‘Multiparametric assessment of the microclimate of pig premises based on
various paratypic factors’ [Multyparametrychna otsinka mikroklimatu
svynarnykiv za riznykh paratypovykh faktoriv], Pig Breeding and
Agroindustrial Production [Svynarstvo i ahropromyslove vyrobnytstvo], (2),
pp. 87–101. doi: 10.37143/2786-7730-2023-2(80)06. [in Ukrainian].
Rudenko, P.,
Strizhakov, A., Rudenko, A., Bondareva, I., Notina, E.,
Bykova, I., Dryemova, T., Lutsay, V., Ivanov, N.,
Sakhno, N. and Meshcheryakov, P. (2021) ‘Characteristic,
evolution and influence on epizootic process of microorganisms in biocenoses of
livestock farms’, European Journal
of Molecular and Clinical Medicine, 8(2), pp. 1865–1878.
Available at: https://www.ejmcm.com/uploads/paper/b3406c48fadd8190113ca98edbf5feab.pdf.
Scicchitano, D.,
Leuzzi, D., Babbi, G., Palladino, G., Turroni, S.,
Laczny, C. C., Wilmes, P., Correa, F.,
Leekitcharoenphon, P., Savojardo, C., Luise, D.,
Martelli, P., Trevisi, P., Aarestrup, F. M.,
Candela, M. and Rampelli, S. (2024) ‘Dispersion of
antimicrobial resistant bacteria in pig farms and in the surrounding
environment’, Animal Microbiome, 6(1), p. 17. doi: 10.1186/s42523-024-00305-8.
Scully, S. M.
and Orlygsson, J. (2023) ‘Cultivation techniques and molecular
methods of identification of thermophilic, anaerobic bacteria’, in Scully, S. M. and
Orlygsson, J. (eds.) Thermophilic Anaerobes: Phylogeny, Physiology and
Biotechnological Applications. Cham: Springer, pp. 109–129. doi: 10.1007/978-3-031-41720-7_4.
Shkromada, O. I. (2014) ‘Analysis
microbial contamination of pig farms and microbiological monitoring growing
piglets’ [Analiz mikrobnoi zabrudnenosti svynohospodarstv ta
mikrobiolohichnyi monitorynh vyroshchuvannia porosiat], Scientific and Technical Bulletin of Institute of Animal Biology and
State Scientific Research Control Institute of Veterinary Medical Products and
Fodder Additives [Naukovo-tekhnichnyi biuleten Instytutu biolohii tvaryn i
Derzhavnoho naukovo-doslidnoho kontrolnoho instytutu veterynarnykh preparativ
ta kormovykh dobavok], 15(2–3), pp. 148–152. Available at: http://nbuv.gov.ua/UJRN/Ntbibt_2014_15_2-3_32. [in Ukrainian].
Shkromada, O. I.
and Hrek, R. V. (2022) ‘Study of the microclimate in premises
for holding pigs’ [Doslidzhennia mikroklimatu u prymishchenniakh dlia
utrymannia svynei], Bulletin of Sumy National Agrarian University. Series:
Veterinary Medicine [Visnyk Sumskoho natsionalnoho ahrarnoho universytetu.
Seriia: Veterynarna medytsyna], (1), pp. 45–50. doi: 10.32845/bsnau.vet.2022.1.7. [in Ukrainian].
Trinh, P.,
Zaneveld, J. R., Safranek, S. and Rabinowitz, P. M.
(2018) ‘One Health relationships between human, animal, and environmental
microbiomes: A mini-review’, Frontiers in Public Health, 6,
p. 235. doi: 10.3389/fpubh.2018.00235.
Wen, C.,
Van Dixhoorn, I., Schokker, D., Woelders, H.,
Stockhofe-Zurwieden, N., Rebel, J. M. J. and Smidt, H.
(2021) ‘Environmentally enriched housing conditions affect pig welfare,
immune system and gut microbiota in early life’, Animal Microbiome,
3(1), p. 52. doi: 10.1186/s42523-021-00115-2.
Xue, D.
(2020) Bacterial Adaptation to
Temperature Stress: Molecular Responses in Two Gram-positive Species from
Distinct Ecological Niches. PhD thesis (Agronomic Sciences and Biological
Engineering). Gembloux, Belgium: University of Liège. Available at: https://hdl.handle.net/2268/252103.
Yakubchak, O. M.,
Kovalenko, V. L., Khomenko, V. I.,
Denysiuk, H. M., Bondar, T. O. and Midyk, S. V.
(2005) Recommendations for the Sanitary
and Microbiological Examination of Swabs from the Surfaces of Test Objects and
Objects of Veterinary Surveillance and Control [Rekomendatsii shchodo
sanitarno-mikrobiolohichnoho doslidzhennia zmyviv z poverkhon test-obiektiv ta
obiektiv veterynarnoho nahliadu i kontroliu]. Kyiv: National Agrarian
University. [in Ukrainian].
Zhu, F.,
Zhu, C., Zhou, D. and Gao, J. (2019)
‘Fate of di (2-ethylhexyl) phthalate and its impact on soil bacterial
community under aerobic and anaerobic conditions’, Chemosphere,
216, pp. 84–93. doi: 10.1016/j.chemosphere.2018.10.078.