Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 10, Issue 3, September 2024, Pages 37–42

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

MICROBIAL LOAD OF FACILITIES FOR KEEPING PIGS OF DIFFERENT PRODUCTION GROUPS

Myronchuk V. O., Peleno R. A.

Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, Lviv, Ukraine, e-mail: vitaliy.myronchuk@gmail.com

Download PDF (print version)

Citation for print version: Myronchuk, V. O. and Peleno, R. A. (2024) ‘Microbial load of facilities for keeping pigs of different production groups’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 10(3), pp. 37–42.

Download PDF (online version)

Citation for online version: Myronchuk, V. O. and Peleno, R. A. (2024) ‘Microbial load of facilities for keeping pigs of different production groups’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 10(3), pp. 37–42. DOI: 10.36016/JVMBBS-2024-10-3-6.

Summary. The study analyzed the microbial load of objects in the facilities where pigs of different production groups were kept at the final stage of production cycles, immediately before disinfection measures. The study found that the number of mesophilic aerobic and facultative anaerobic microorganisms (MAFAnM) in the swabs from the surfaces of the studied objects varied from 5.00 to 6.88 log CFU/cm³. The lowest quantity of bacteria was found on drinkers and feeders, while the highest quantity was on the facilities’ floor. The average level of microbial load in the facilities for keeping sows, farrowing, and growing piglets ranged from 5.91 to 6.07 log CFU/cm³. The highest values were observed for the study of swabs taken in the piglet-rearing facility. The proportion of field isolates of the rod, cocci, and spiral shapes of microorganisms in the rearing facility was 62.1%, 28.8%, and 9.1%, respectively, in the farrowing facility — 63.9%, 29.2%, and 6.9%, and in the sow housing facility — 66.2%, 26%, and 7.8%. Escherichia coli was dominant in the rearing facility — 13.9% of isolates, Proteus mirabilis, Bacillus subtilis, and Campylobacter jejuni — 9.7% each, and Citrobacter freundii, Enterococcus faecalis, and Enterococcus faecium — 8.3% each. In farrowing facilities, the proportion of E. coli isolates was 16.6%. 7.5% fewer isolates belonged to B. subtilis, Streptococcus salivarius, and C. jejuni, and 9% fewer isolates belonged to Klebsiella pneumoniae, P. mirabilis, E. faecalis, and E. faecium. In the sow housing facility, the proportion of E. coli isolates was 12.9%, the number of P. mirabilis isolates was 1.2% less, and C. freundii was 3.8% less

Keywords: MAFAnM, contamination, disinfection

References:

Bolibrukh, M. and Rublenko, I. (2023) ‘Influence of factors on the gastrointestinal microbiota of pigs’, Ukrainian Journal of Veterinary and Agricultural Sciences, 6(1), pp. 68–71. doi: 10.32718/ujvas6-1.11.

Buoio, E., Cialini, C. and Costa, A. (2023) ‘Air quality assessment in pig farming: The Italian ClassyFarm’, Animals, 13(14), p. 2297. doi: 10.3390/ani13142297.

Ferone, M., Gowen, A., Fanning, S. and Scannell, A. G. M. (2020) ‘Microbial detection and identification methods: Bench top assays to omics approaches’, Comprehensive Reviews in Food Science and Food Safety, 19(6), pp. 3106–3129. doi: 10.1111/1541-4337.12618.

Fischer, J., Hille, K., Mellmann, A., Schaumburg, F., Kreienbrock, L. and Köck, R. (2016) ‘Low-level antimicrobial resistance of Enterobacteriaceae isolated from the nares of pig-exposed persons’, Epidemiology and Infection, 144(4), pp. 686–690. doi: 10.1017/S0950268815001776.

Garrity, G. M., Brenner, D. J., Krieg, N. R. and Staley, J. T. (eds.) (2005a) Bergey’s Manual of Systematic Bacteriology, Vol. 2: The Proteobacteria, Part B: The Gammaproteobacteria. 2nd ed. New York, NY, USA: Springer. doi: 10.1007/0-387-28022-7.

Garrity, G. M., Brenner, D. J., Krieg, N. R. and Staley, J. T. (eds.) (2005b) Bergey’s Manual of Systematic Bacteriology, Vol. 2: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. 2nd ed. New York, NY, USA: Springer. doi: 10.1007/0-387-29298-5.

Haidukevych, S. and Semenova, N. (2023) ‘Modernization of the installation to ensure comfortable conditions for keeping pigs’ [Modernizatsiia ustanovky dlia zabezpechennia komfortnykh umov utrymannia svynei], Electromechanical and Energy Saving Systems [Elektromekhanichni i enerhozberihaiuchi systemy], (4), pp. 46–56. doi: 10.32782/2072-2052.2023.4.63.5. [in Ukrainian].

ISO (International Organization for Standardization) (2004) ISO 7932:2004 Microbiology of Food and Animal Feeding Stuffs — Horizontal Method for the Enumeration of Presumptive Bacillus cereus — Colony-count Technique at 30 Degrees C. Geneva: ISO. Available at: https://www.iso.org/standard/38219.html.

ISO (International Organization for Standardization) (2006) ISO 16266:2006 Water Quality — Detection and Enumeration of Pseudomonas aeruginosa — Method by Membrane Filtration. Geneva: ISO. Available at: https://www.iso.org/standard/39272.html.

ISO (International Organization for Standardization) (2010) ISO 13720:2010 Meat and Meat Products — Enumeration of Presumptive Pseudomonas spp. Geneva: ISO. Available at: https://www.iso.org/standard/45099.html.

ISO (International Organization for Standardization) (2017a) ISO 10272-1:2017 Microbiology of the Food Chain — Horizontal Method for Detection and Enumeration of Campylobacter spp. — Part 1: Detection Method. Geneva: ISO. Available at: https://www.iso.org/standard/63225.html.

ISO (International Organization for Standardization) (2017b) ISO 21528-1:2017 Microbiology of the Food Chain — Horizontal Method for the Detection and Enumeration of Enterobacteriaceae — Part 1: Detection of Enterobacteriaceae. Geneva: ISO. Available at: https://www.iso.org/standard/55228.html.

ISO (International Organization for Standardization) (2023) ISO 15213-2:2023 Microbiology of the Food Chain — Horizontal Method for the Detection and Enumeration of Clostridium spp. — Part 2: Enumeration of Clostridium perfringens by Colony-count Technique. Geneva: ISO. Available at: https://www.iso.org/standard/71498.html.

Kot, S. P., Bondar, A. O., Starodubets, O. O., Kotsyubenko, H. A. and Poruchnyk, M. M. (2019) ‘Sanitary-hygenic assessment of keeping lactating sows’ [Sanitarno-hihiienichna otsinka utrymannia pidsysnykh svynomatok], Livestock of Ukraine [Tvarynnytstvo Ukrainy], (1), pp. 13–21. Available at: http://dspace.mnau.edu.ua/jspui/handle/123456789/5611. [in Ukrainian].

Luiken, R. E. C., Van Gompel, L., Bossers, A., Munk, P., Joosten, P., Hansen, R. B., Knudsen, B. E., García-Cobos, S., Dewulf, J., Aarestrup, F. M., Wagenaar, J. A., Smit, L. A. M., Mevius, D. J., Heederik, D. J. J. and Schmitt, H. (2020) ‘Farm dust resistomes and bacterial microbiomes in European poultry and pig farms’, Environment International, 143, p. 105971. doi: 10.1016/j.envint.2020.105971.

Luyckx, K., Millet, S., Van Weyenberg, S., Herman, L., Heyndrickx, M., Dewulf, J. and De Reu, K. (2016) ‘Comparison of competitive exclusion with classical cleaning and disinfection on bacterial load in pig nursery units’, BMC Veterinary Research, 12(1), p. 189. doi: 10.1186/s12917-016-0810-9.

MHU (Ministry of Health of Ukraine) (2023) Hygienic Regulations of Chemicals in the Air of the Working Area [Hihiienichni rehlamenty khimichnykh rechovyn u povitri robochoi zony]. Available at: https://zakon.rada.gov.ua/laws/z0741-20#n59. [in Ukrainian].

Myronchuk, V. O. and Peleno, R. A. (2023) ‘The role of pre-disinfection measures in reducing the microbial load of pig house facilities’ [Rol pereddezinfektsiinykh zakhodiv u znyzhenni mikrobnoho navantazhennia ob’iektiv svynarnyka], Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj. Series: Veterinary Medicine [Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho. Seriia: Veterynarna Medycyna], 25(112), pp. 212–215. doi: 10.32718/nvlvet11233. [in Ukrainian].

Nebylytsia, M., Boiko, O., Gavrish, O. and Sotnichenko, Y. (2023) ‘Multiparametric assessment of the microclimate of pig premises based on various paratypic factors’ [Multyparametrychna otsinka mikroklimatu svynarnykiv za riznykh paratypovykh faktoriv], Pig Breeding and Agroindustrial Production [Svynarstvo i ahropromyslove vyrobnytstvo], (2), pp. 87–101. doi: 10.37143/2786-7730-2023-2(80)06. [in Ukrainian].

Rudenko, P., Strizhakov, A., Rudenko, A., Bondareva, I., Notina, E., Bykova, I., Dryemova, T., Lutsay, V., Ivanov, N., Sakhno, N. and Meshcheryakov, P. (2021) ‘Characteristic, evolution and influence on epizootic process of microorganisms in biocenoses of livestock farms’, European Journal of Molecular and Clinical Medicine, 8(2), pp. 1865–1878. Available at: https://www.ejmcm.com/uploads/paper/b3406c48fadd8190113ca98edbf5feab.pdf.

Scicchitano, D., Leuzzi, D., Babbi, G., Palladino, G., Turroni, S., Laczny, C. C., Wilmes, P., Correa, F., Leekitcharoenphon, P., Savojardo, C., Luise, D., Martelli, P., Trevisi, P., Aarestrup, F. M., Candela, M. and Rampelli, S. (2024) ‘Dispersion of antimicrobial resistant bacteria in pig farms and in the surrounding environment’, Animal Microbiome, 6(1), p. 17. doi: 10.1186/s42523-024-00305-8.

Scully, S. M. and Orlygsson, J. (2023) ‘Cultivation techniques and molecular methods of identification of thermophilic, anaerobic bacteria’, in Scully, S. M. and Orlygsson, J. (eds.) Thermophilic Anaerobes: Phylogeny, Physiology and Biotechnological Applications. Cham: Springer, pp. 109–129. doi: 10.1007/978-3-031-41720-7_4.

Shkromada, O. I. (2014) ‘Analysis microbial contamination of pig farms and microbiological monitoring growing piglets’ [Analiz mikrobnoi zabrudnenosti svynohospodarstv ta mikrobiolohichnyi monitorynh vyroshchuvannia porosiat], Scientific and Technical Bulletin of Institute of Animal Biology and State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives [Naukovo-tekhnichnyi biuleten Instytutu biolohii tvaryn i Derzhavnoho naukovo-doslidnoho kontrolnoho instytutu veterynarnykh preparativ ta kormovykh dobavok], 15(2–3), pp. 148–152. Available at: http://nbuv.gov.ua/UJRN/Ntbibt_2014_15_2-3_32. [in Ukrainian].

Shkromada, O. I. and Hrek, R. V. (2022) ‘Study of the microclimate in premises for holding pigs’ [Doslidzhennia mikroklimatu u prymishchenniakh dlia utrymannia svynei], Bulletin of Sumy National Agrarian University. Series: Veterinary Medicine [Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia: Veterynarna medytsyna], (1), pp. 45–50. doi: 10.32845/bsnau.vet.2022.1.7. [in Ukrainian].

Trinh, P., Zaneveld, J. R., Safranek, S. and Rabinowitz, P. M. (2018) ‘One Health relationships between human, animal, and environmental microbiomes: A mini-review’, Frontiers in Public Health, 6, p. 235. doi: 10.3389/fpubh.2018.00235.

Wen, C., Van Dixhoorn, I., Schokker, D., Woelders, H., Stockhofe-Zurwieden, N., Rebel, J. M. J. and Smidt, H. (2021) ‘Environmentally enriched housing conditions affect pig welfare, immune system and gut microbiota in early life’, Animal Microbiome, 3(1), p. 52. doi: 10.1186/s42523-021-00115-2.

Xue, D. (2020) Bacterial Adaptation to Temperature Stress: Molecular Responses in Two Gram-positive Species from Distinct Ecological Niches. PhD thesis (Agronomic Sciences and Biological Engineering). Gembloux, Belgium: University of Liège. Available at: https://hdl.handle.net/2268/252103.

Yakubchak, O. M., Kovalenko, V. L., Khomenko, V. I., Denysiuk, H. M., Bondar, T. O. and Midyk, S. V. (2005) Recommendations for the Sanitary and Microbiological Examination of Swabs from the Surfaces of Test Objects and Objects of Veterinary Surveillance and Control [Rekomendatsii shchodo sanitarno-mikrobiolohichnoho doslidzhennia zmyviv z poverkhon test-obiektiv ta obiektiv veterynarnoho nahliadu i kontroliu]. Kyiv: National Agrarian University. [in Ukrainian].

Zhu, F., Zhu, C., Zhou, D. and Gao, J. (2019) ‘Fate of di (2-ethylhexyl) phthalate and its impact on soil bacterial community under aerobic and anaerobic conditions’, Chemosphere, 216, pp. 84–93. doi: 10.1016/j.chemosphere.2018.10.078.