Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 10, Issue 4, October 2024, Pages 3–17

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

FORENSIC VETERINARY ASSESSMENT OF THE EXPERT INFORMATIVENESS OF BIOTRANSFORMATION PATTERNS OF DOG AND CAT CORPSES IN VARIOUS STATES OF DECOMPOSITION

Kazantsev R. H., Yatsenko I. V.

State Biotechnological University, Kharkiv, Ukraine, e-mail: trilobite@ukr.net

Download PDF (print version)

Citation for print version: Kazantsev, R. H. and Yatsenko, I. V. (2024) ‘Forensic veterinary assessment of the expert informativeness of biotransformation patterns of dog and cat corpses in various states of decomposition’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 10(4), pp. 3–17.

Download PDF (online version)

Citation for online version: Kazantsev, R. H. and Yatsenko, I. V. (2024) ‘Forensic veterinary assessment of the expert informativeness of biotransformation patterns of dog and cat corpses in various states of decomposition’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 10(4), pp. 3–17. DOI: 10.36016/JVMBBS-2024-10-4-1.

Summary. Currently, there is no universal algorithm for determining the time of death of an animal. The purpose of the study was to provide a comprehensive argumentation of the forensic veterinary diagnostic significance of the biotransformation phenomena of 28 dog and cat corpses with justification based on their thorough assessment of expert criteria for the duration of postmortem intervals. The study used special and logical-philosophical methods: physical, observation, cyto/histomorphological, forensic veterinary autopsy, analysis, synthesis, deduction, and induction. Early mortalities: rigor mortis, drying, spots, cooling, and late mortalities: decay, skeletalization, fragmentation, patterns of biotransformation, their time ranges, and morphological characteristics are identified. The criterion informativeness of the ‘idiomuscular’ and ‘pupillary’ supravital reactions has been proved. The dynamics of disorganization of venous blood of dog and cat corpses within 48 h after death was determined. The sequence of postmortem succession by the entomofauna is shown. According to the concept of ‘evidence-based’ veterinary medicine, the key stages of postmortem decomposition of dog and cat corpses at different levels of structural organization are illustrated. Based on the analysis of the results of the empirical study, it is substantiated that in the interval of more than 72 h from the moment of death, the answers to the questions in the expert’s opinion, due to the large number of complex processes that occur in the tissues of dog and cat corpses, are often only probable

Keywords: forensic veterinary thanatology, corpse phenomena, postmortem intervals, postmortem decomposition, prescription of death, animals

References:

Abbate, J. M., Grifò, G., Capparucci, F., Arfuso, F., Savoca, S., Cicero, L., Consolo, G. and Lanteri, G. (2022) ‘Postmortem electrical conductivity changes of Dicentrarchus labrax skeletal muscle: Root Mean Square (RMS) parameter in estimating time since death’, Animals, 12(9), p. 1062. doi: 10.3390/ani12091062.

Brooks, J. W. (2016) ‘Postmortem changes in animal carcasses and estimation of the postmortem interval’, Veterinary Pathology, 53(5), pp. 929–940. doi: 10.1177/0300985816629720.

Du, T., Lin, Z., Xie, Y., Ye, X., Tu, C., Jin, K., Xie, J. and Shen, Y. (2018) ‘Metabolic profiling of femoral muscle from rats at different periods of time after death’, PLoS One, 13(9), p. e0203920. doi: 10.1371/journal.pone.0203920.

Geissenberger, J., Ehrenfellner, B., Monticelli, F. C., Pittner, S. and Steinbacher, P. (2021) ‘Dismembered porcine limbs as a proxy for postmortem muscle protein degradation’, International Journal of Legal Medicine, 135(4), pp. 1627–1636. doi: 10.1007/s00414-021-02571-6.

Horalskyi, L. P., Khomych, V. T. and Kononskyi, O. I. (2015) Histological Techniques and Methods of Morphological Studies in Normal and Pathological Conditions [Osnovy histolohichnoi tekhniky i morfofunktsionalni metody doslidzhen u normi ta pry patolohii]. 3rd ed. Zhytomyr, Polissia. ISBN 9789666557936. URL: http://ir.polissiauniver.edu.ua/handle/123456789/3788. [in Ukrainian].

Kazantsev, R. H. and Yatsenko, I. V. (2021) ‘Cytomorphological changes of a cat’s cadaver’s parenchymal organs in the early postmortem period in the forensic veterinary examination aspect’, Theoretical and Applied Veterinary Medicine, 9(3), pp. 146–159. doi: 10.32819/2021.93023.

Li, L., Wang, Y., Liao, M., Zhang, Y., Kang, C., Hu, G., Guo, Y. and Wang, J. (2022) ‘The postmortem interval of two decedents and two dog carcasses at the same scene based on forensic entomology’, Insects, 13(2), p. 215. doi: 10.3390/insects13020215.

Liao, C.-C., Chang, Y.-S., Yang, S.-Y. and Chou, R.-G. R. (2016) ‘Post-mortem proteolysis and tenderisation are more rapid and extensive in female duck breast muscle’, British Poultry Science, 57(6), pp. 734–739. doi: 10.1080/00071668.2016.1209736.

Listos, P., Gryzińska, M., Batkowska, J., Dylewska, M., Dudzińska, E. and Piórkowski, J. (2017) ‘Preliminary study on the estimation of the time of death in animals based on the microflora development in a dog’s gastrocnemius muscle’, Medycyna Weterynaryjna, 73(4), pp. 229–233. doi: 10.21521/mw.5677.

Listos, P., Gryzinska, M., Batkowska, J., Grela, M. and Jakubczak, A. (2018) ‘Algorithm for establishing the time of death of a dog based on temperature measurements in selected sites of the body during the early post-mortem period’, Forensic Science International, 289, pp. 124–129. doi: 10.1016/j.forsciint.2018.05.004.

Omond, K. J., Winskog, C., Cala, A. and Byard, R. W. (2017) ‘Neonatal limb amputation—An unusual form of postmortem canine predation’, Journal of Forensic Sciences, 62(4), pp. 937–939. doi: 10.1111/1556-4029.13378.

Paltian, J. J., Da Fonseca, C. A. R., Pinz, M. P., Luchese, C. and Antunes Wilhelm, E. (2019) ‘Post-mortem interval estimative through determination of catalase and Δ-aminolevulinate dehydratase activities in hepatic, renal, skeletal muscle and cerebral tissues of Swiss mice’, Biomarkers, 24(5), pp. 478–483. doi: 10.1080/1354750X.2019.1619837.

Panasiuk-Flak, K., Grela, M. and Listos, P. (2021) ‘Determination of the time of death of dogs using atropine and pilocarpine in the early post-mortem period — an assessment of the usefulness of the method’, Medycyna Weterynaryjna, 77(07), pp. 6546–2021. doi: 10.21521/mw.6546.

Parry, N. M. A. and Stoll, A. (2020) ‘The rise of veterinary forensics’, Forensic Science International, 306, p. 110069. doi: 10.1016/j.forsciint.2019.110069.

Piegari, G., De Biase, D., d’Aquino, I., Prisco, F., Fico, R., Ilsami, R., Pozzato, N., Genovese, A. and Paciello, O. (2019) ‘Diagnosis of drowning and the value of the diatom test in veterinary forensic pathology’, Frontiers in Veterinary Science, 6, p. 404. doi: 10.3389/fvets.2019.00404.

Piegari, G., De Pasquale, V., d’Aquino, I., De Biase, D., Caccia, G., Campobasso, C. P., Tafuri, S., Russo, V. and Paciello, O. (2023) ‘Evaluation of muscle proteins for estimating the post-mortem interval in veterinary forensic pathology’, Animals, 13(4), p. 563. doi: 10.3390/ani13040563.

Raskin, R. E., Meyer, D. and Boes, K. M. (2022) Canine and Feline Cytopathology: A Color Atlas and Interpretation. 4th ed. Elsevier. doi: 10.1016/C2018-0-02134-9.

Ressel, L. (2017) Normal Cell Morphology in Canine and Feline Cytology. Hoboken, NJ: Wiley Blackwell. doi: 10.1002/9781119456063.

Sanford, M. R. (2015) ‘Forensic entomology of decomposing humans and their decomposing pets’, Forensic Science International, 247, pp. 11–17. doi: 10.1016/j.forsciint.2014.11.029.

Serdioucov, J., Shkundia, D. and Kruchynenko, O. (2023) ‘Identification of time of death of cats according to histological changes in some organs’, Regulatory Mechanisms in Biosystems, 14(3), pp. 399–406. doi: 10.15421/10.15421/022359.

Shi, F.-X., Li, P., Lu, H.-L., Li, N., Du, Q.-X., Wang, Y.-Y. and Sun, J.-H. (2020) ‘Expression of autophagy-associated protein in rat muscle tissues after antemortem and postmortem injury’, Journal of Forensic Medicine [Fa Yi Xue Za Zhi], 36(3), рр. 293–298. doi: 10.12116/j.issn.1004-5619.2020.03.001. [in Chinese].

Stacy, B. A., Costidis, A. M. and Keene, J. L. (2015) ‘Histologic changes in traumatized skeletal muscle exposed to seawater: A canine cadaver study’, Veterinary Pathology, 52(1), pp. 170–175. doi: 10.1177/0300985814522820.

Stern, A. W. and Muralidhar, M. (2022) ‘Postmortem vitreous humor analysis in dogs, cats and horses’, Journal of Analytical Toxicology, 46(1), pp. 103–107. doi: 10.1093/jat/bkaa175.

Touroo, R. and Fitch, A. (2016) ‘Identification, collection, and preservation of veterinary forensic evidence: On scene and during the postmortem examination’, Veterinary Pathology, 53(5), pp. 880–887. doi: 10.1177/0300985816641175.

Yamada, K., Satoh, K., Kanai, E. and Madarame, H. (2023) ‘Role of autopsy imaging in veterinary forensic medicine: experiences in 39 cases’, Journal of Veterinary Medical Science, 85(3), pp. 301–307. doi: 10.1292/jvms.22-0548.

Yatsenko, I. (2022) ‘Stages of expert research and their application in the forensic veterinary examination of animal
carcasses’, Theory and Practice of Forensic Science and Criminalistics, 26(1), pp. 52–78. Available at: https://khrife-journal.org/index.php/journal/article/view/511.

Yatsenko, I. and Kazantsev, R. (2022) ‘Cytomorphological characteristics of necroptates of internal organs of dogs in the early post-mortem period in the aspect of forensic veterinary examination’, Ukrainian Journal of Veterinary Sciences, 13(4), рр. 60–74. doi: 10.31548/ujvs.13(4).2022.60-74.

Yatsenko, I. and Kazantsev, R. (2024) ‘Informativeness of postmortem dynamics of skeletal muscles of dog and cat corpses for forensic veterinary diagnosis of death due to acute hypoxia’, Ukrainian Journal of Veterinary Sciences, 15(1), pp. 139–167. doi: 10.31548/veterinary1.2024.139.

Zaporozhan, V. M., Napkhaniuk, V. K., Horianova, N. O., Bazhora, Yu. I., Kresiun, V. Y. and Servetskyi, K. L. (2002) Morphology of Blood Cells of Laboratory Animals and Humans: Atlas [Morfolohiia klityn krovi laboratornykh tvaryn i liudyny: Atlas]. Odesa: Odesa State Medical University. Available at: https://repo.odmu.edu.ua/xmlui/handle/123456789/1321. [in Ukrainian].

Zheng, Z., Zhai, X.-D., Xia, Z.-Y., Li, Y.-L., Zhao, L.-L., Liu, H.-L. and Mo, Y.-N. (2019) ‘Relationship between electrical conductivity and chemical content of rat skeletal muscle impregnating solution and postmortem interval’, Journal of Forensic Medicine [Fa Yi Xue Za Zhi], 35(5), рр. 572–575. doi: 10.12116/j.issn.1004-5619.2019.05.011. [in Chinese].