Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 10, Issue 4, October 2024, Pages 24–27

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

EVALUATION OF MECHANICAL STABILITY OF DOG ERYTHROCYTES UNDER THE INFLUENCE OF CRYOPROTECTANTS

Denysova O. M.

State Biotechnological University, Kharkiv, Ukraine, e-mail: denysova78@gmail.com

Download PDF (print version)

Citation for print version: Denysova, O. M. (2024) ‘Evaluation of mechanical stability of dog erythrocytes under the influence of cryoprotectants’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 10(4), pp. 24–27.

Download PDF (online version)

Citation for online version: Denysova, O. M. (2024) ‘Evaluation of mechanical stability of dog erythrocytes under the influence of cryoprotectants’, Journal for Veterinary Medicine, Biotechnology and Biosafety, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 10(4), pp. 24–27. DOI: 10.36016/JVMBBS-2024-10-4-3.

Summary. The mechanical stability of erythrocytes is a critical factor in ensuring their effective functioning during storage, transportation, and cryopreservation. The objective of this study was to ascertain the impact of diverse cryoprotectants, including glycerol, sucrose, dimethyl sulfoxide (DMSO), polyethylene glycol-1500 (PEG-1500), and hydroxyethyl starch (HES), on hemolytic damage to dog erythrocytes subjected to mechanical stress. For this purpose, dog erythrocytes were incubated in varying concentrations of cryoprotectants and NaCl. The cells were subjected to mechanical stress by stirring the suspension in a container filled with plastic beads at room temperature. The resulting hemolysis was evaluated spectrophotometrically. The results demonstrated that the most pronounced stabilization of erythrocyte membranes was observed during incubation with PEG-1500 and HES, while high glycerol concentrations caused membrane destabilization. Sucrose demonstrated a dual effect: at low concentrations, it exhibited protective properties for cellular membranes, while at higher concentrations, enhanced membrane vulnerability to stress. The results demonstrated that DMSO at all studied concentrations did not significantly change the mechanical stability of erythrocytes compared to the control group. Our findings indicate that an increase in salt concentration in the extracellular medium is associated with a reduction in the mechanical stability of dog erythrocytes. The effect of cryoprotectants on the mechanical stability of erythrocytes was found to be closely related to their physicochemical properties. This highlights the importance of precise selection of cryoprotectant concentrations to improve the results of red blood cell storage and transportation. The conclusions of this study are important for further optimization of technologies for the long-term storage of canine erythrocytes, in particular in cryobanks

Keywords: mechanical stress, cryopreservation

References:

Alvarez, J. G. and Storey, B. T. (1992) ‘Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation’, Journal of Andrology, 13(3), pp. 232–241. doi: 10.1002/j.1939-4640.1992.tb00306.x.

Baskurt, O. K. and Meiselman, H. J. (2013) ‘Red blood cell mechanical stability test’, Clinical Hemorheology and Microcirculation, 55(1), pp. 55–62. doi: 10.3233/CH-131689.

CE (The Council of Europe). (1986) European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. (European Treaty Series, No. 123). Strasbourg: The Council of Europe. Available at: https://conventions.coe.int/treaty/en/treaties/html/123.htm.

CEC (The Council of the European Communities) (2010) ‘Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes’, The Official Journal of the European Communities, L 276, pp. 33–79. Available at: http://data.europa.eu/eli/dir/2010/63/oj.

Denysova, О. and Zhegunov, G. (2021) ‘Cryopreservation of canine erythrocytes using dimethyl sulfoxide, polyethylene glycol and sucrose’, Problems of Cryobiology and Cryomedicine, 31(1), pp. 38–50. doi: 10.15407/cryo31.01.038.

Elliott, G. D., Wang, S. and Fuller, B. J. (2017) ‘Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures’, Cryobiology, 76, pp. 74–91. doi: 10.1016/j.cryobiol.2017.04.004.

Gao, D. and Critser, J. K. (2000) ‘Mechanisms of cryoinjury in living cells’, ILAR Journal, 41(4), pp. 187–196. doi: 10.1093/ilar.41.4.187.

Ishiguro, H. and Rubinsky, B. (1994) ‘Mechanical interactions between ice crystals and red blood cells during directional solidification’, Cryobiology, 31(5), pp. 483–500. doi: 10.1006/cryo.1994.1059.

Kameneva, M. V., Repko, B. M., Krasik, E. F., Perricelli, B. C. and Borovetz, H. S. (2003) ‘Polyethylene glycol additives reduce hemolysis in red blood cell suspensions exposed to mechanical stress’, ASAIO Journal, 49(5), pp. 537–542. doi: 10.1097/01.MAT.0000084176.30221.CF.

Saragusty, J., Gacitua, H., Rozenboim, I. and Arav, A. (2009) ‘Do physical forces contribute to cryodamage?’, Biotechnology and Bioengineering, 104(4), pp. 719–728. doi: 10.1002/bit.22435.

Shpakova, N. M., Orlovа, N. V. and Alexandrova, D. І. (2010) Method for Destruction of Erythrocytes [Sposib destruktsii erytrotsytiv]. Patent no. UA 52701. Available at: https://sis.nipo.gov.ua/uk/search/detail/257082. [in Ukrainian].

Shpakova, N. M., Orlova, N. V., Nipot, E. E. and Aleksandrova, D. I. (2015) ‘Comparative study of mechanical stress effect on human and animal erythrocytes’ [Porivnialne vyvchennia dii mekhanichnoho stresu na erytrotsyty liudyny i tvaryn], Fiziologichnyi Zhurnal, 61(3), pp. 75–80. doi: 10.15407/fz61.03.075. [in Ukrainian].

Simmonds, R. C. (2017) ‘Chapter 4. Bioethics and animal use in programs of research, teaching, and testing’, in Weichbrod, R. H., Thompson, G. A. and Norton, J. N. (eds.) Management of Animal Care and Use Programs in Research, Education, and Testing. 2nd ed. Boca Raton: CRC Press, pp. 35–62. doi: 10.1201/9781315152189-4.

Tarasev, M., Chakraborty, S. and Alfano, K. (2015) ‘RBC mechanical fragility as a direct blood quality metric to supplement storage time’, Military Medicine, 180(3S), pp. 150–157. doi: 10.7205/MILMED-D-14-00404.

Ugurel, E., Kucuksumer, Z., Eglenen, B. and Yalcin, O. (2017) ‘Blood storage alters mechanical stress responses of erythrocytes’, Clinical Hemorheology and Microcirculation, 66(2), pp. 143–155. doi: 10.3233/CH-160219.

VRU (Verkhovna Rada Ukrainy) (2006) ‘Law of Ukraine No. 3447-IV of 21.02.2006About protection of animals from cruel treatment’ [Zakon Ukrainy № 3447-IV vid 21.02.2006 ‘Pro zakhyst tvaryn vid zhorstokoho povodzhennia’], News of the Verkhovna Rada of Ukraine [Vidomosti Verkhovnoi Rady Ukrainy], 27, art. 230. Available at: https://zakon.rada.gov.ua/laws/3447-15. [in Ukrainian].

Zemlianskykh, N. G. (2018) ‘The effects of cryoprotective substances on the mechanical stability and geometric parameters of human erythrocytes’, Biophysics, 63(1), pp. 66–76. doi: 10.1134/S0006350918010219.

Zemlyanskikh, N. G. and Denisova, O. N. (2009) ‘Changes in the erythrocyte membrane-cytoskeleton complex induced by dimethyl sulfoxide, polyethylene glycol, and low temperature’, Biophysics, 54(4), pp. 490–496. doi: 10.1134/S0006350909040162.

Zhegunov, G. F. and Denisova, O. N. (2010) ‘Permeability of mammalian erythrocytes for the molecules of glycerol and DMSO and the level of cellular viability after freezing-thawingʼ [Pronitsaemosteritrotsitov mlekopitayushchikh dlya molekul glitserina i DMSO i stepensokhrannosti kletok posle zamorazhivaniya-ottaivaniya], Reports of the National Academy of Sciences of Ukraine [Dopovidi Natsionalnoi akademii nauk Ukrainy], 12, pp. 139–143. Available at: http://dspace.nbuv.gov.ua/handle/123456789/31118. [in Russian].

Zhegunov, G., Denysova, O. and Zhegunova, G. (2022) ‘Blood hypothermic storage and erythrocyte cryopreservation in dogs’, Problems of Cryobiology and Cryomedicine, 32(4), pp. 245–255. doi: 10.15407/cryo32.04.245.