Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
11, Issue 1, January 2025, Pages 16–21
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
IDENTIFICATION
OF CONSERVED THREE-WAY JUNCTION IN THE GENOME OF THE BOVINE FOAMY VIRUS
Balak O. K. 1,
Limanskaya O. Yu. 2
1 Kharkiv
National Medical University, Kharkiv, Ukraine
2 National
Scientific Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: olgaliman@ukr.net
Download
PDF (print version)
Citation for print version: Balak, O. K.
and Limanskaya, O. Yu. (2025) ‘Identification of conserved three-way junction in the genome of the
bovine foamy virus’, Journal
for Veterinary Medicine, Biotechnology and Biosafety, 11(1),
pp. 16–21.
Download
PDF (online version)
Citation for online version: Balak, O. K.
and Limanskaya, O. Yu. (2025) ‘Identification of conserved three-way junction in the genome of the
bovine foamy virus’, Journal
for Veterinary Medicine, Biotechnology and Biosafety,
11(1), pp. 16–21. DOI: 10.36016/JVMBBS-2025-11-1-3.
Summary. Three-way junctions (3WJs) belong to unusual
structures in DNA and RNA. 3WJs are non-canonical structures like G-quadruplexes,
triplexes (H-DNA), cruciform, hairpin structures, A-DNA, and Z-DNA that differ
from the classic double-stranded B-DNA. 3WJs play an important role in many
biological processes and may be associated with some human diseases. This study
aimed to search for putative 3WJ structures in the mRNA of bovine foamy virus
(BFV). Bioinformatic analysis was used to analyze conserved RNA structural
motifs of intramolecular 3WJ in BFV mRNA. The Vfold2D software was used to
search for structural motifs in the 3WJ RNA. Multiple sequence alignment was
conducted using MEGA software. For the confirmation of secondary structures and
the determination of the thermodynamic parameters of 3WJs, Mfold software from
the UNAFold web server was utilized. Based on multiple alignments of 37 BFV
isolates with the complete genome, we found 6 putative 3WJ structures in the
BFV mRNA, which are stabilized by 20–26 complementary nucleotides pairs
(ntp) and localized in the gag, env, bel2
genes, as well as in the 5’LTR. However, only two 3WJ structures in gag and env genes from the abovementioned six ones, designed by the Mfold
software, coincide with 3WJ structures determined by the Vfold2D software. Five
3WJ structures from 6 identified ones are not conserved. Conserved 3WJ
structure with a length of 73 nt for a set of 37 BFV isolates with complete
genome is localized between 5’-LTR and 5’-end of gag gene and partially covers
5’-end of gag gene. This
intramolecular secondary structure is formed by three duplexes and stabilized
by 20 complementary ntp with a free energy of −19.8 kcal/mol. Our
analysis of SNPs in the paper (Bao et al., 2020), which arose after serial
passages of BFV Riems-infected MDBK cells has shown that the determined 3WJ
structure is retained, indicating the importance of this alternative structure
for BFV functioning
Keywords: bovine foamy
virus, three-way junction, 3WJ, structural motif
References:
Assenberg, R., Weston, A., Cardy, D. L. N.,
and Fox, K. R. (2002) ‘Sequence-dependent folding of DNA
three-way junctions’, Nucleic Acids Research, 30(23),
pp. 5142–5150. doi: 10.1093/nar/gkf637.
Bailey, S., Wichitwechkarn, J.,
Johnson, D., Reilly, B. E., Anderson, D. L. and
Bodley, J. W. (1990) ‘Phylogenetic analysis and secondary
structure of the Bacillus subtilis
bacteriophage RNA required for DNA packaging’, Journal of Biological
Chemistry, 265(36), pp. 22365–22370. doi: 10.1016/S0021-9258(18)45714-6.
Bajaj, P., Steger, G. and
Hammann, C. (2011) ‘Sequence elements outside the catalytic core of
natural hairpin ribozymes modulate the reactions differentially’, Biological
Chemistry, 392(7), pp. 593–600. doi: 10.1515/bc.2011.071.
Bao, Q., Hotz-Wagenblatt, A.,
Betts, M. J., Hipp, M., Hugo, A., Pougialis, G.,
Lei-Rossmann, J. and Löchelt, M. (2020) ‘Shared and cell
type-specific adaptation strategies of Gag and Env yield high titer bovine
foamy virus variants’, Infection, Genetics and Evolution, 82,
p. 104287. doi: 10.1016/j.meegid.2020.104287.
Chen, K., Eargle, J., Lai, J.,
Kim, H., Abeysirigunawardena, S., Mayerle, M., Woodson, S.,
Ha, T. and Luthey-Schulten, Z. (2012) ‘Assembly of the five-way
junction in the ribosomal small subunit using hybrid MD-Go̅
simulations’, The Journal of Physical Chemistry B, 116(23),
pp. 6819–6831. doi: 10.1021/jp212614b.
Chu, C.-C., Plangger, R.,
Kreutz, C. and Al-Hashimi, H. M. (2019) ‘Dynamic ensemble
of HIV-1 RRE stem IIB reveals non-native conformations that disrupt the
Rev-binding site’, Nucleic Acids Research, 47(13),
pp. 7105–7117. doi: 10.1093/nar/gkz498.
Foguel, M. V., Zamora, V.,
Ojeda, J., Reed, M., Bennett, A., Calvo-Marzal, P.,
Gerasimova, Y. V., Kolpashchikov, D. and
Chumbimuni-Torres, K. Y. (2024) ‘DNA nanotechnology for nucleic
acid analysis: sensing of nucleic acids with DNA junction-probes’, The
Analyst, 149(3), pp. 968–974. doi: 10.1039/D3AN01707A.
Guo, P., Erickson, S. and
Anderson, D. (1987) ‘A small viral RNA is required for in vitro packaging of bacteriophage
φ29 DNA’, Science, 236(4802), pp. 690–694. doi: 10.1126/science.3107124.
Hechler, T., Materniak, M.,
Kehl, T., Kuzmak, J. and Löchelt, M. (2012) ‘Complete
genome sequences of two novel European clade bovine foamy viruses from Germany
and Poland’, Journal of Virology, 86(19),
pp. 10905–10906. doi: 10.1128/JVI.01875-12.
Hill, A. C. and Schroeder, S. J.
(2017) ‘Thermodynamic stabilities of three-way junction nanomotifs in
prohead RNA’, RNA, 23(4), pp. 521–529. doi: 10.1261/rna.059220.116.
Kadrmas, J. L.,
Ravin, A. J. and Leontis, N. B. (1995) ‘Relative stabilities
of DNA three-way, four-way and five-way junctions (multi-helix junction loops):
Unpaired nucleotides can be stabilizing or destabilizing’, Nucleic
Acids Research, 23(12), pp. 2212–2222. doi: 10.1093/nar/23.12.2212.
Kashefi-Kheyrabadi, L.,
Nguyen, H. V., Go, A., Baek, C., Jang, N.,
Lee, J. M., Cho, N.-H., Min, J. and Lee, M.-H. (2022)
‘Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2
RNA using an electrochemical biosensor’, Biosensors and Bioelectronics,
195, p. 113649. doi: 10.1016/j.bios.2021.113649.
Khan, A. S., Bodem, J.,
Buseyne, F., Gessain, A., Johnson, W., Kuhn, J. H.,
Kuzmak, J., Lindemann, D., Linial, M. L.,
Löchelt, M., Materniak-Kornas, M., Soares, M. A. and
Switzer, W. M. (2018) ‘Spumaretroviruses: Updated taxonomy and
nomenclature’, Virology, 516, pp. 158–164. doi: 10.1016/j.virol.2017.12.035.
Koirala, D., Shao, Y.,
Koldobskaya, Y., Fuller, J. R., Watkins, A. M.,
Shelke, S. A., Pilipenko, E. V., Das, R.,
Rice, P. A. and Piccirilli, J. A. (2019) ‘A conserved
RNA structural motif for organizing topology within picornaviral internal
ribosome entry sites’, Nature Communications, 10(1), p. 3629.
doi: 10.1038/s41467-019-11585-z.
Lindemann, D., Hütter, S.,
Wei, G. and Löchelt, M. (2021) ‘The unique, the known, and
the unknown of spumaretrovirus assembly’, Viruses, 13(1),
p. 105. doi: 10.3390/v13010105.
Luo, X., McKeague, M.,
Pitre, S., Dumontier, M., Green, J., Golshani, A.,
Derosa, M. C. and Dehne, F. (2010) ‘Computational approaches
toward the design of pools for the in vitro selection of complex
aptamers’, RNA, 16(11), pp. 2252–2262. doi: 10.1261/rna.2102210.
Lynch, C. A.,
Foguel, M. V., Reed, A. J., Balcarcel, A. M.,
Calvo-Marzal, P., Gerasimova, Y. V. and
Chumbimuni-Torres, K. Y. (2019) ‘Selective determination of
isothermally amplified Zika virus RNA using a universal DNA-hairpin probe in
less than 1 hour’, Analytical Chemistry, 91(21),
pp. 13458–13464. doi: 10.1021/acs.analchem.9b02455.
Mathews, D. H.,
Disney, M. D., Childs, J. L., Schroeder, S. J.,
Zuker, M. and Turner, D. H. (2004) ‘Incorporating chemical
modification constraints into a dynamic programming algorithm for prediction of
RNA secondary structure’, Proceedings of the National Academy of
Sciences, 101(19), pp. 7287–7292. doi: 10.1073/pnas.0401799101.
McGorman, B., Poole, S.,
López, M. V. and Kellett, A. (2023) ‘Analysis of
non-canonical three- and four-way DNA junctions’, Methods, 219,
pp. 30–38. doi: 10.1016/j.ymeth.2023.09.002.
Melcher, S. E.,
Wilson, T. J. and Lilley, D. M. J. (2003) ‘The
dynamic nature of the four-way junction of the hepatitis C virus
IRES’, RNA, 9(7), pp. 809–820. doi: 10.1261/rna.5130703.
Ojeda, J., Torres-Salvador, F.,
Bruno, N., Eastwood, H., Gerasimova, Y. and
Chumbimuni-Torres, K. (2024) ‘Highly reproducible electrochemical
biosensor for Influenza A virus towards low-resource settings’, Analytical
Methods, 16(5), pp. 772–779. doi: 10.1039/D3AY01825C.
Ojha, M., Vogt, J.,
Das, N. K., Redmond, E., Singh, K., Banna, H. A.,
Sadat, T. and Koirala, D. (2024) ‘Structure of saguaro cactus
virus 3′ translational enhancer mimics 5′ cap for eIF4E
binding’, Proceedings of the National Academy of Sciences, 121(4),
p. e2313677121. doi: 10.1073/pnas.2313677121.
Ouellet, J., Melcher, S.,
Iqbal, A., Ding, Y. and Lilley, D. M. J. (2010)
‘Structure of the three-way helical junction of the hepatitis C
virus IRES element’, RNA, 16(8), pp. 1597–1609. doi: 10.1261/rna.2158410.
Serganov, A., Huang, L. and
Patel, D. J. (2008) ‘Structural insights into amino acid
binding and gene control by a lysine riboswitch’, Nature,
455(7217), pp. 1263–1267. doi: 10.1038/nature07326.
Shu, D., Shu, Y., Haque, F.,
Abdelmawla, S. and Guo, P. (2011) ‘Thermodynamically stable RNA
three-way junction for constructing multifunctional nanoparticles for delivery
of therapeutics’, Nature Nanotechnology, 6(10),
pp. 658–667. doi: 10.1038/nnano.2011.105.
Song, Z., Gremminger, T.,
Singh, G., Cheng, Y., Li, J., Qiu, L., Ji, J.,
Lange, M. J., Zuo, X., Chen, S.-J., Zou, X.,
Boris-Lawrie, K. and Heng, X. (2021) ‘The three-way junction
structure of the HIV-1 PBS-segment binds host enzyme important for viral
infectivity’, Nucleic Acids Research, 49(10),
pp. 5925–5942. doi: 10.1093/nar/gkab342.
Song, Q., Hu, Y., Yin, A.,
Wang, H. and Yin, Q. (2022) ‘DNA holliday junction: History,
regulation and bioactivity’, International Journal of Molecular
Sciences, 23(17), p. 9730. doi: 10.3390/ijms23179730.
Tamura, K., Stecher, G.,
Peterson, D., Filipski, A. and Kumar, S. (2013) ‘MEGA6:
Molecular Evolutionary Genetics Analysis version 6.0’, Molecular
Biology and Evolution, 30(12), pp. 2725–2729. doi: 10.1093/molbev/mst197.
Wu, B., Girard, F.,
van Buuren, B., Schleucher, J., Tessari, M. and
Wijmenga, S. (2004) ‘Global structure of a DNA three-way junction by
solution NMR: towards prediction of 3H fold’, Nucleic Acids Research,
32(10), pp. 3228–3239. doi: 10.1093/nar/gkh645.
Xue, Y., Gracia, B.,
Herschlag, D., Russell, R. and Al-Hashimi, H. M. (2016)
‘Visualizing the formation of an RNA folding intermediate through a fast
highly modular secondary structure switch’, Nature Communications,
7(1), p. ncomms11768. doi: 10.1038/ncomms11768.
Yamabe, M., Kaihatsu, K. and
Ebara, Y. (2018) ‘Sialyllactose-modified three-way junction DNA as
binding inhibitor of influenza virus hemagglutinin’, Bioconjugate
Chemistry, 29(5), pp. 1490–1494. doi: 10.1021/acs.bioconjchem.8b00045.
Zhang, H., Endrizzi, J. A.,
Shu, Y., Haque, F., Sauter, C., Shlyakhtenko, L. S.,
Lyubchenko, Y., Guo, P. and Chi, Y.-I. (2013) ‘Crystal
structure of 3WJ core revealing divalent ion-promoted thermostability and
assembly of the Phi29 hexameric motor pRNA’, RNA, 19(9), pp. 1226–1237.
doi: 10.1261/rna.037077.112.
Zuker, M. (2003) ‘Mfold web server
for nucleic acid folding and hybridization prediction’, Nucleic Acids
Research, 31(13), pp. 3406–3415. doi: 10.1093/nar/gkg595.