Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 6, Issue 2, February 2020, Pages 32–36

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)


Paliy A. P. 1, Sumakova N. V. 1, Mashkey A. M. 1, Gontar V. V. 1, Palii A. P. 2, Yurchenko D. A. 3

1 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, е-mail:

2 Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine

3 Luhansk National Agrarian University, Starobilsk, Luhansk Region, Ukraine

Download PDF (print version)

Citation for print version: Paliy, A. P., Sumakova, N. V., Mashkey, A. M., Gontar, V. V., Palii, A. P. and Yurchenko, D. A. (2020) ‘Study of disinvasive properties of innovative aldehyde disinfectant’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 6(2), pp. 32–36.

Download PDF (online version)

Citation for online version: Paliy, A. P., Sumakova, N. V., Mashkey, A. M., Gontar, V. V., Palii, A. P. and Yurchenko, D. A. (2020) ‘Study of disinvasive properties of innovative aldehyde disinfectant’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 6(2), pp. 32–36. DOI: 10.36016/JVMBBS-2020-6-2-6.

Summary. The pollution rate of environment by pathogens of invasive diseases and contamination of manure, soil, water, and other objects by them are constantly changing depending on the prevalence and intensity of invasion among farm animals. Prevention and control of invasive animal diseases are essential to prevent their spread, as well as to obtain high-quality sanitary products for livestock production. The preservation of pathogens in the environment depends on the intensity of exposure to natural and artificial factors and their resistance to chemicals that are used for disinfection. A large number of disinfectants, both domestic and foreign, have been proposed for disinfection, but they are not always effective under industrial conditions for conducting forced or preventive disinfestation. The introduction of disinfectants into practice is impossible without a preliminary laboratory assessment of their disinvasive properties. The aim of our work was to study the disinvasive properties of a new aldehyde disinfectant on the test models of Ascaris suum eggs. The studies were carried out in the Laboratory of Veterinary Sanitation and Parasitology of the National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’ in accordance with the methodological recommendations ‘Methods to Identify and Evaluate Safety Parameters and Quality of Disinfectants, Detergent-Disinfectants Used During Production, Storage, Transportation and Sale of Products of Animal Origin’ (2010). As a result of the studies, it was found that the aldehyde disinfectant exhibits disinvasive properties to the test culture of Ascaris suum eggs when applied at a concentration of 4.0% at room temperature (18–20 ± 0.5°C) and exposure of 3 h. The disinfectant can be used for preventive and forced disinvasions of animal holding facilities and other veterinary control facilities

Keywords: disinfectant, disinvasive properties, Ascaris suum, test culture, concentration, exposure


Akamatsu, T., Tabata, K., Hironaga, M. and Uyeda, M. (1997) ‘Evaluation of the efficacy of a 2% glutaraldehyde product for disinfection of fibreoptic endoscopes with an automatic machine’, Journal of Hospital Infection, 35(1), pp. 47–57. doi:

Bessat, M. and Dewair, A. (2019) ‘Assessment of the inhibitory effects of disinfectants on the embryonation of Ascaridia columbae eggs’, PLoS ONE, 14(5), p. e0217551. doi:

Brownell, S. A. and Nelson, K. L. (2006) ‘Inactivation of single-celled Ascaris suum eggs by low-pressure UV radiation’, Applied and Environmental Microbiology, 72(3), pp. 2178–2184. doi:

Burgess, W., Margolis, A., Gibbs, S., Duarte, R. S. and Jackson, M. (2017) ‘Disinfectant susceptibility profiling of glutaraldehyde-resistant nontuberculous mycobacteria’, Infection Control and Hospital Epidemiology, 38(7), pp. 784–791. doi:

Campbell, I., Tzipori, A., Hutchison, G. and Angus, K. (1982) ‘Effect of disinfectants on survival of cryptosporidium oocysts’, Veterinary Record, 111(18), pp. 414–415. doi:

Daugschies, A., Bangoura, B. and Lendner, M. (2013) ‘Inactivation of exogenous endoparasite stages by chemical disinfectants: Current state and perspectives’, Parasitology Research, 112(3), pp. 917–932. doi:

Koski, P., Anttila, P. and Kuusela, J. (2015) ‘Killing of Gyrodactylus salaris by heat and chemical disinfection’, Acta Veterinaria Scandinavica, 58, p. 21. doi:

Oh, K.-S., Kim, G.-T., Ahn, K.-S. and Shin, S.-S. (2016) ‘Effects of disinfectants on larval development of Ascaris suum eggs’, The Korean Journal of Parasitology, 54(1), pp. 103–107. doi:

Paliy, A. P. (2018) ‘Antibacterial effect of ‘Ecocide C’ disinfectant against mycobacteria’ [Efektyvnist antybakterialnoi dii dezinfikuiuchoho zasobu «Ekotsyd S» shchodo mikobakterii], Ukrainian Journal of Ecology, 8(1), pp. 141–147. doi: [in Ukrainian]

Paliy, A. P. and Paliy, A. P. (2019) Technic and Technological Innovations in Dairy Cattle [Tekhniko-tekhnolohichni innovatsii u molochnomu skotarstvi]. Kharkiv: Miskdruk. ISBN 9786176192077. [in Ukrainian]

Paliy, A., Zavgorodniy, A., Stegniy, B. and Gerilovych, A. (2015) ‘A study of the efficiency of modern domestic disinfectants in the system of TB control activities’, Agricultural Science and Practice, 2(2), pp. 26–31. doi:

Paliy, A., Stegniy, B., Muzyka, D., Gerilovych, A. and Korneykov, O. (2016) ‘The study of the properties of the novel virucidal disinfectant’, Agricultural Science and Practice, 3(3), pp. 41–47. doi:

Paliy, A. P., Sumakova, N. V., Mashkey, A. M., Stegniy, B. T., Guzhvynska, S. O. and Rodionova, K. O. (2018a) A Method for Disinvasion of Surfaces Contaminated with Ascaris Suum Eggs [Sposib dezinvazii poverkhon, kontaminovanykh yaitsiamy Ascaris suum]. Patent no. UA 130430. Available at: [in Ukrainian]

Paliy, A. P., Sumakova, N. V., Mashkey, A. M., Petrov, R. V., Paliy, A. P. and Ishchenko, K. V. (2018b) ‘Contamination of animal-keeping premises with eggs of parasitic worms’, Biosystems Diversity, 26(4), pp. 327–333. doi:

Paliy, A., Sumakova, N., Petrov, R., Shkromada, O., Ulko, L. and Palii, A. (2019) ‘Contamination of urbanized territories with eggs of helmiths of animals’, Biosystems Diversity, 27(2), pp. 118–124. doi:

Pecson, B. M. and Nelson, K. L. (2005) ‘Inactivation of Ascaris suum eggs by ammonia’, Environmental Science and Technology, 39(20), pp. 7909–7914. doi:

Rajan, J. S. and Ripple, S. D. (2009) ‘Efficacy and safety of glutaraldehyde-based high level disinfectant products’, American Journal of Infection Control, 37(5), p. e22. doi:

Shalaby, H. A., Abdel-Shafy, S., Ashry, H. M. and El-Moghazy, F. M. (2011) ‘Efficacy of hydrogen peroxide and dihydroxy benzol mixture (disinfectant) on Toxocara canis eggs’, Research Journal of Parasitology, 6(4), pp. 144–150. doi:

Yu, Y.-M., Kim, J.-W., Na, W.-S., Youn, Y.-N., Choi, I.-W. and Lee, Y.-H. (2014) ‘Effects of some pesticides on development of Ascaris suum eggs’, The Korean Journal of Parasitology, 52(1), pp. 111–115. doi:

Zavgorodniy, A. I., Stegniy, B. T., Paliy, A. P., Gorzheiev, V. M. and Smirnov, A. M. (2013) Scientific and Practical Aspects of Disinfection in Veterinary Medicine [Naukovi ta praktychni aspekty dezinfektsii u veterynarii]. Kharkiv: FOP Brovin O. V. ISBN 9789662445596. [in Ukrainian]

Zazharskyi, V. V., Davydenko, P., Kulishenko, O., Chumak, V., Kryvaya, A., Biben, I. A., Tishkina, N. M., Borovik, I., Boyko, O. O. and Brygadyrenko, V. V. (2018) ‘Bactericidal, protistocidal and nematodicidal properties of mixtures of alkyldimethylbenzyl ammonium chloride, didecyldimethyl ammonium chloride, glutaraldehyde and formaldehyde’, Regulatory Mechanisms in Biosystems, 9(4), pp. 540–545. doi: