Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 5, Issue 3, September 2019, Pages 10–12

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

PORCINE CIRCOVIRUS TYPE II SCREENING IN FERAL SWINE POPULATION IN UKRAINE

Rudova N. G., Bolotin V. I., Solodiankin O. S., Gerilovych А. P.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: rudovanatawa@ukr.net

Download PDF (print version)

Citation for print version: Rudova, N. G., Bolotin, V. I., Solodiankin, O. S. and Gerilovych, А. P. (2019) ‘Porcine circovirus type II screening in feral swine population in Ukraine’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 5(3), pp. 10–12.

Download PDF (online version)

Citation for online version: Rudova, N. G., Bolotin, V. I., Solodiankin, O. S. and Gerilovych, А. P. (2019) ‘Porcine circovirus type II screening in feral swine population in Ukraine’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 5(3), pp. 10–12. DOI: 10.36016/JVMBBS-2019-5-3-2.

Summary. Porcine circovirus type 2 (PCV2) is an emergent single-stranded DNA virus found all over the world in domestic pigs and wild boars that causes infectious disease with a great impact on swine productivity. PCV2 has 1.7 kb genome that includes two main genes, which encode replication-related protein (rep) and the major structural capsid (cap) protein. Both of these genes can be used as target sequences for the primer design for the detection of PCV2 as well as for sequencing of designated regions. We carried out a screening due to the PCV2 circulating among the wild boar population in 10 regions of Ukraine. PCR screening was performed using primer pairs designed on the target sequences of the replicative and capsid genes. According to the results of the research, the presence of genetic material of PCV2 was found in 31.8% of the tested samples. The developed set of primers may be suitable for diagnostics, as well as for the development of specific sites for the purpose of sequencing of PCV2 cap-gene due to the obtained DNA samples during epizootic screening

Keywords: PCV2, rep-gene, cap-gene, epizootic screening, PCR

References:

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. and Sayers, E. W. (2012) ‘GenBank’, Nucleic Acids Research, 41(D1), pp. D36D42. doi: https://doi.org/10.1093/nar/gks1195

Gerilovych, A. P., Stegniy, B. T., Rudova, N. G. and Buzun, A. I. (2015) ‘Study of the genetic variability of the porcine circovirus type 2 in Ukraine’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 1(2), pp. 25–31. Available at: http://jvmbbs.kharkov.ua/archive/2015/volume1/issue2/oJVMBBS_2015012_025-031.pdf

Guo, L. J., Lu, Y. H., Wei, Y. W., Huang, L. P. and Liu, C. M. (2010) ‘Porcine circovirus type 2 (PCV2): Genetic variation and newly emerging genotypes in China’, Virology Journal, 7, p. 273. doi: https://doi.org/10.1186/1743-422X-7-273

Huang, Y., Shao, M., Xu, X., Zhang, X., Du, Q., Zhao, X., Zhang, W., Lyu, Y. and Tong, D. (2013) ‘Evidence for different patterns of natural inter-genotype recombination between two PCV2 parental strains in the field’, Virus Research, 175(1), pp. 78–86. doi: https://doi.org/10.1016/j.virusres.2013.03.014

Olvera, A., Cortey, M. and Segalés, J. (2007) ‘Molecular evolution of porcine circovirus type 2 genomes: Phylogeny and clonality’, Virology, 357(2), pp. 175–185. doi: https://doi.org/10.1016/j.virol.2006.07.047

Rychlik, W. (1995) ‘Selection of primers for polymerase chain reaction’, Molecular Biotechnology, 3(2), pp. 129–134. doi: https://doi.org/10.1007/BF02789108

Segalés, J., Domingo, M., Chianini, F., Majó, N., Domínguez, J., Darwich, L. and Mateu, E. (2004) ‘Immunosuppression in Postweaning multisystemic wasting syndrome affected pigs’, Veterinary Microbiology, 98(2), pp. 151–158. doi: https://doi.org/10.1016/j.vetmic.2003.10.007

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) ‘MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0’, Molecular Biology and Evolution, 30(12), pp. 2725–2729. doi: https://doi.org/10.1093/molbev/mst197