Issue 4
Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
1, Issue 4, December 2015, Pages 5–8
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
Studying of phylogenetic relationships of leukemia virus with other
retroviruses in cattle
Limanskaya O. Yu., Gema I.
A., Gorbatenko S. K., Gerilovych
A. P.
National
Scientific Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: antger2011@gmail.com
Download
PDF (print version)
Citation for print version: Limanskaya, O. Yu.,
Gema, I. A., Gorbatenko, S.
K. and Gerilovych, A. P. (2015) ‘Studying of phylogenetic relationships of leukemia virus with other
retroviruses in cattle’, Journal
for Veterinary Medicine, Biotechnology and Biosafety,
1(4), pp. 5–8.
Download
PDF (online version)
Citation for
online version: Limanskaya, O. Yu., Gema, I. A., Gorbatenko, S. K. and Gerilovych,
A. P. (2015) ‘Studying of phylogenetic
relationships of leukemia virus with other retroviruses in cattle’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 1(4),
pp. 5–8. Available at:
http://jvmbbs.kharkov.ua/archive/2015/volume1/issue4/oJVMBBS_2015014_005-008.pdf
Summary.
Bovine leukemia virus (BLV) is one of the
retroviruses, which genetically, structurally and functionally related to viruses of human
T-cell leukemia. BLV is a very convenient model for studying the
pathogenesis of human leukemia. Genomes of retroviruses have high variability
levels due to lack of a mechanism of correct errors that occur when copying
matrix during replication, and possible genetic recombination. In this regard,
the study of the genetic variability of the virus is one of the major
objectively for biological monitoring. At this time, molecular genetic analysis
(polymerase chain reaction (PCR)) is a necessary part
of phylogenetic research. The aim of this work was to
study the variability of the bovine leukemia virus, to establish phylogenetic relationships between isolates sequenced
bovine leukemia virus, which circulates in farms of different regions in
Ukraine, with other animals retroviruses. The sampling of clinical material
from cattle farms was conducted in different geographical regions in Ukraine
and extracted proviral BLV
DNA. Totally 831 samples of peripheral blood were collected and tested from
cattle farms in Kharkiv region, 10 samples — Kirovohrad region; 10 samples — Donetsk region; 41
samples — Crimea, Simferopol region; 10 — samples of Poltava
region. Sequenced fragments of env gene of bovine
leukemia virus proviral DNA, circulating in different
geographical regions in Ukraine were analyzed. Established isolates of bovine
leukemia virus, circulating in Ukraine, belonging to the Euro-Asian subtype.
Proved genetic affinity of leukemia virus and bovine syncytial
virus, Jembrana disease virus and bovine
immunodeficiency virus.
Keywords: DNA, phylogeographic relationships, polymerase chain reaction,
sequencing, retroviruses, virus bovine leukemia
References:
Caraguel, C., Stryhn,
H., Gagne, N., Dohoo, I. and Hammell, L. (2009) ‘Traditional descriptive analysis and novel
visual representation of diagnostic repeatability
and reproducibility: Application to an infectious salmon
anaemia virus RT-PCR assay’, Preventive Veterinary Medicine, 92(1–2), pp.
9–19. doi: http://dx.doi.org/10.1016/j.prevetmed.2009.07.011
Chang, Z., Jin,
M., Liu, N., Xie, H., Cui, S., Zhang, Q. and Duan, Z. (2009) ‘Analysis of epidemiologic
feature and genetic sequence of Sapovirus in
China’, Chinese
Journal of Virology, 25(2), pp.
113–116. doi: http://dx.doi.org/10.13242/j.cnki.bingduxuebao.001979
Darlix, J.-L.
and Spahr, P.-F. (1983) ‘High spontaneous mutation rate of Rons
sarcoma virus demonstrated by direct sequencing of the RNA
genome’, Nucleic
Acids Research, 11(17),
pp. 5953–5967. doi: http://dx.doi.org/10.1093/nar/11.17.5953
Dube, S., Bachman,
S., Poiesz, B. J., Ferrer,
J. F., Esteban, E., Choi,
D., Love, J. and Spicer, T. (1997) ‘Degenerate
and specific PCR assays for
the detection of bovine leukaemia
virus and primate T cell
leukaemia/lymphoma virus pol DNA
and RNA: Phylogenetic comparisons of amplified sequences
from cattle and primates from
around the world’, Journal of General Virology,
78(6), pp. 1389–1398. doi:
http://dx.doi.org/10.1099/0022-1317-78-6-1389
Giammarioli, M., Pellegrini,
C., Casciari, C., Rossi, E.
and De Mario,
G. M. (2008) ‘Genetic diversity
of bovine viral diarrhea virus 1: Italian isolates clustered in at least
seven subgenotypes’, Journal of Veterinary Diagnostic Investigation, 20(6), pp.
783–788. doi: http://dx.doi.org/10.1177/104063870802000611
Katz, R. A. and Skalka, A. M. (1990) ‘Generation of diversity
in retroviruses’, Annual Review of Genetics, 24(1), pp. 409–443. doi: http://dx.doi.org/10.1146/annurev.ge.24.120190.002205
Licursi, M., Inoshima,
Y., Wu, D., Yokoyama, T., Gonzalez, E. T. and Sentsui, H. (2003) ‘Provirus
variants of bovine leukemia virus in naturally
infected cattle from Argentina and Japan’, Veterinary Microbiology,
96(1), pp. 17–23. doi:
http://dx.doi.org/10.1016/s0378-1135(03)00202-5
Manini, P., De
Palma, G. and Mutti, A. (2007) ‘Exposure assessment at the
workplace: Implications of biological variability’,
Toxicology Letters,
168(3), pp. 210–218. doi:
http://dx.doi.org/10.1016/j.toxlet.2006.09.014
Meyerhans, A., Cheynier,
R., Albert, J., Seth, M., Kwok, S., Sninsky, J., Morfeldt-Manson, L., Asjo, B. and Wain-Hobson, S. (1989)
‘Temporal fluctuations
in HIV quasispecies
in vivo are
not reflected by sequential HIV
isolations’, Cell,
58(5), pp. 901–910. doi:
http://dx.doi.org/10.1016/0092-8674(89)90942-2
Milos, P. M. (2009) ‘Emergence of single-molecule
sequencing and potential for molecular
diagnostic applications’,
Expert Review of Molecular Diagnostics,
9(7), pp. 659–666. doi:
http://dx.doi.org/10.1586/erm.09.50
Parvin, J. D., Moscona, A., Pan, W. T., Leider, J. M. and Palese, P. (1986) ‘Measurement
of the mutation
rates of animal viruses: Influenza A virus
and poliovirus type 1’, Journal of Virology, 59(2), pp. 377–383. Available at: http://jvi.asm.org/content/59/2/377.full.pdf
Steinhauer, D. A. and Holland, J. J. (1987) ‘Rapid evolution of RNA viruses’,
Annual Review of Microbiology, 41(1), pp. 409–431. doi: http://dx.doi.org/10.1146/annurev.mi.41.100187.002205
Steinhauer, D. A., Torre, J. C. de la, Meier, E. and
Holland, J. J. (1989) ‘Extreme
heterogeneity in populations of vesicular stomatitis virus’, Journal of Virology, 63(5), pp. 2072–2080. Available at: http://jvi.asm.org/content/63/5/2072.full.pdf
Wendel, J. F. and Doyle, J. J. (1998) Phylogenetic incongruence: Window into genome
history and molecular evolution. In: Soltis, D. E., Soltis, P. S. and Doyle, J. J. Molecular Systematics of Plants II. Boston: Kluwer Academic Publishing. doi: http://dx.doi.org/10.1007/978-1-4615-5419-6_10
Willems, L., Thienpont,
E., Kerkhofs, P., Burny, A.
Mammerickx, M. and Kettmann, R. (1993) ‘Bovine
leukemia virus, an animal model
for the study
of intrastrain variability’, Journal
of Virology, 67(2), pp. 1086–1089. Available at: http://jvi.asm.org/content/67/2/1086.full.pdf