Issue 4
Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
1, Issue 4, December 2015, Pages 22–27
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
Genetics of resistance to
clinical mastitis in cows: A review
Fedota O. M. 1,2,
Ruban S. Yu. 3, Bolotin V. I. 2, Klochko
I. O. 2
1 V. N. Karazin
Kharkov National University, Kharkiv, Ukraine,
e-mail: afedota@mail.ru
2 National Scientific Center ‘Institute of Experimental and
Clinical Veterinary Medicine’, Kharkiv, Ukraine
3 M. V. Zubets Institute of Animal Breeding and
Genetics of NAAS, Chubynske, Ukraine
Download
PDF (print version)
Citation for print version: Fedota, O. M., Ruban, S. Yu., Bolotin, V. I. and
Klochko, I. O. (2015) ‘Genetics of resistance
to clinical mastitis in cows: A review’, Journal for Veterinary Medicine, Biotechnology and Biosafety,
1(4), pp. 22–27.
Download
PDF (online version)
Citation for online version: Fedota, O. M., Ruban, S. Yu., Bolotin, V. I. and
Klochko, I. O. (2015) ‘Genetics of resistance
to clinical mastitis in cows: A review’, Journal for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 1(4), pp. 22–27. Available at: http://jvmbbs.kharkov.ua/archive/2015/volume1/issue4/oJVMBBS_2015014_022-027.pdf
Summary. The article provides an overview of
data about genetics of cattle and susceptibility to infectious diseases by the
example of clinical mastitis. The problems of the genetic markers associated
with mastitis susceptibility of cattle in studies of scientists from different
countries are analyzed. Clinical mastitis (CM) is an
inflammation of the mammary gland associated with elevated somatic cell count (SCC) and is one of the biggest problems affecting
commercial milk production. In the world literature
the problems of mastitis etiology were discussed and it was noted that many
factors promote the development of mastitis, including the genetic background
and feeding environment. The unfavorable genetic correlations between milk
production and clinical mastitis are well known. The complexity of mastitis
infection suggests a polygenic and multi-factorial immune response comprising
many different proteins. Most studies focused on polygenic variation of the
trait and genetic correlation among phenotypic traits related to mastitis such
as somatic cell counts and clinical cases. At the present
time, the role of Major Histocompatibility
Complex (MHC genes) in the susceptibility or
resistance to intrammamary infection is well studied.
Researchers have shown that investigation of genetic markers associated with
mastitis susceptibility, provide initial evidence for a phenotypic association
between a single nucleotide polymorphisms of CXCR2, CD18, MBL1, TLR1,
TLR2, CARD15, HMGB1, ATP1A1, BoLADQA1 genes and somatic cell counts and clinical
manifestations in dairy cows, as well as potential insight into specific
mechanisms affected in cows more susceptible to mastitis. According researchers
currently identified differences between breeds. Dairy breeds originating from
eastern France (Montbéliarde, Abondance) or central Europe (Simmental, Brown Swiss) have
lower SCC and clinical mastitis frequency than
Holstein. Within breed, genetic variability is also quite large. Because the
disease susceptibility may be genetically dependent, in which case disease
resistance could be improved by animal selection
through breeding programmes. The most economical
method of reducing SCC in Ukraine, based on the
experience of other countries, including in our opinion, is testing monthly
milk samples from each cow after the selection of genes for mastitis resistance.
Keywords: clinical
mastitis, somatic cell count, genetic markers, mastitis susceptibility,
mastitis resistance, dairy breeds
References:
Bai, J., Lin, J., Li, W. and Liu, M. (2012) ‘Association of toll-like
receptor 2 polymorphisms with somatic cell score in Xinjiang brown
cattle’, Animal Science Journal, 83(1), pp. 23–30. doi: http://dx.doi.org/10.1111/j.1740-0929.2011.00909.x
Baltian, L. R., Ripoli,
M. V., Sanfilippo, S., Takeshima,
S. N., Aida, Y., Giovambattista, G., Sanfilippo, S., Aida, Y. and Giovambattista,
G. (2012) ‘Association between BoLA-DRB3 and
somatic cell count in Holstein cattle from Argentina’, Molecular
Biology Reports, 39(7), pp. 7215–7220. doi: http://dx.doi.org/10.1007/s11033-012-1526-y
Beecher, C., Daly, M., Childs, S., Berry,
D. P., Magee, D. A., McCarthy, T. V. and Giblin, L.
(2010) ‘Polymorphisms in bovine immune genes and their associations with
somatic cell count and milk production in dairy cattle’, [Online] BMC
Genetics, 11(99), p. 1–9. doi: http://dx.doi.org/10.1186/1471-2156-11-99
Bloemhof, S., Dejong, G.
and Dehaas, Y. (2009) ‘Genetic parameters for
clinical mastitis in the first three lactations of Dutch Holstein
cattle’, Veterinary Microbiology, 134(1–2), pp.
165–171. doi:
http://dx.doi.org/10.1016/j.vetmic.2008.09.024
DSU [State Committee of Ukraine for Standardization, Metrology and
Certification] (1997) DSTU 3662–97. Whole cow milk. Requirements
for purchasing [Moloko koroviache
nezbyrane. Vymohy
pry zakupivli]. Kyiv: Derzhstandart Ukrainy.
[in Ukrainian]
Detilleux, J. (2009) ‘Genetic factors
affecting susceptibility to udder pathogens’, Veterinary Microbiology,
134(1–2), pp. 157–164. doi: http://dx.doi.org/10.1016/j.vetmic.2008.09.023
Duangjinda,
M., Buayai, D., Pattarajinda,
V., Phasuk, Y., Katawatin,
S., Vongpralub, T. and Chaiyotvittayakul,
A. (2008) ‘Detection of bovine leukocyte antigen DRB3
alleles as candidate markers for clinical mastitis resistance in Holstein . Zebu’, Journal of Animal Science,
87(2), pp. 469–476. doi:
http://dx.doi.org/10.2527/jas.2007-0789
Haas, Y. de, Ouweltjes, W., Napel, J. ten, Windig, J. J. and
de Jong, G. (2008) ‘Alternative somatic cell
count traits as mastitis indicators for genetic selection’, Journal of
Dairy Science, 91(6), pp. 2501–2511. doi: http://dx.doi.org/10.3168/jds.2007-0459
Heringstad,
B., Gianola, D., Chang, Y. M., Odegard,
J. and Klemetsdal, G. (2006) ‘Genetic
associations between clinical mastitis and somatic cell score in early
first-lactation cows’, Journal of Dairy Science, 89(6), pp.
2236–2244. doi: http://dx.doi.org/10.3168/jds.s0022-0302(06)72295-0
Heringstad,
B., Klemetsdal, G. and Ruane,
J. (2000) ‘Selection for mastitis resistance in dairy cattle: A review
with focus on the situation in the Nordic countries’, Livestock
Production Science, 64(2–3), pp. 95–106. doi: http://dx.doi.org/10.1016/s0301-6226(99)00128-1
Hinrichs, D., Bennewitz,
J., Stamer, E., Junge, W., Kalm, E. and Thaller, G. (2011)
‘Genetic analysis of mastitis data with different models’, Journal
of Dairy Science, 94(1), pp. 471–478. doi: http://dx.doi.org/10.3168/jds.2010-3374
Kantsevich,
S. I., Rusko, N. P. and Baksheiev,
M. M. (2014) ‘Estimation of milk quality impact on economic efficiency of
milk production’, The Economy of Agro-Industrial Complex, 4, pp.
24–27. Available at: http://eapk.org.ua/sites/default/files/translate/1404kantsevich_rusko_baksheiev.pdf
Koeck,
A., Heringstad, B., Egger-Danner, C., Fuerst, C., Winter, P. and Fuerst-Waltl,
B. (2010) ‘Genetic analysis of clinical mastitis and somatic cell count
traits in Austrian Fleckvieh cows’, Journal
of Dairy Science, 93(12), pp. 5987–5995. doi: http://dx.doi.org/10.3168/jds.2010-3451
Levchenko,
A. G. (2015) The characteristics of the
manifestation of mastitis in cows in farms with various technologies and the
development of a comprehensive preventive therapeutic measures [Osoblyvosti proiavu mastytu u koriv u hospodarstvakh z riznymy tekhnolohiiamy ta rozrobka kompleksnykh profilaktychno likuvalnykh zakhodiv]. The thesis for the
scientific degree of the candidate of veterinary sciences, specialty 16.00.03
— veterinary microbiology, epizootology,
infectious diseases and immunology. Kyiv: State
Scientific Control Institute of Biotechnology and Strains of Microorganisms.
[in Ukrainian]
Li, L., Huang, J., Zhang, X., Ju, Z., Qi, C., Zhang, Y., Li, Q., Wang, C., Miao, W., Zhong, J., Hou, M. and Hang, S.
(2012) ‘One SNP in the 3΄-UTR of HMGB1 gene affects the
binding of target bta-miR-223 and is involved in
mastitis in dairy cattle’, Immunogenetics,
64(11), pp. 817–824. doi:
http://dx.doi.org/10.1007/s00251-012-0641-1
Liu, Y. X., Xu, C. H., Gao, T. Y. and Sun, Y. (2012) ‘Polymorphisms of
the ATP1A1 gene associated with mastitis in dairy
cattle’, Genetics and Molecular Research, 11(1), pp.
651–660. doi: http://dx.doi.org/10.4238/2012.march.16.3
Looper,
M. (2012) Reducing somatic cell count in dairy
cattle. Division of Agriculture Research and Extension,
University of Arkansas System, FSA4002.
Available at: http://www.uaex.edu/publications/pdf/fsa-4002.pdf
Oltenacu, P. A. and Broom, D. M. (2010) ‘The
impact of genetic selection for increased milk yield on the welfare of dairy
cows’, Animal Welfare, 19(S1), pp.
39–49. Available at: http://www.fao.org/fileadmin/user_upload/animalwelfare/dairy.pdf
Opsal,
M. A., Lien, S., Brenna-Hansen, S., Olsen, H. G. and Vage,
D. I. (2008) ‘Association analysis of the constructed linkage maps covering
TLR2 and TLR4 with clinical
mastitis in Norwegian red cattle’, Journal of Animal Breeding and
Genetics, 125(2), pp. 110–118. doi:
http://dx.doi.org/10.1111/j.1439-0388.2007.00704.x
Pant, S. D., Schenkel, F. S., Leyva-Baca, I., Sharma, B. S. and Karrow,
N. A. (2008) ‘Identification of polymorphisms in bovine TLR2 and CARD15,
associations between CARD15 polymorphisms
and milk somatic cell score in Canadian Holsteins, and functional relevance of SNP c.3020A>T’, Developments
in biologicals (Basel), 132, pp. 247–253. doi: http://dx.doi.org/10.1159/000317167
Park, Y. H, Joo, Y. S., Park. J. Y., Moon, J.
S., Kim, S. H., Kwon, N. H., Ahn, J. S., Davis, W. C.
and Davies, C. J. (2004) ‘Characterization of lymphocyte subpopulations
and major histocompatibility complex haplotypes of mastitis-resistant and susceptible
cows’, Journal of Veterinary Science, 5(1), pp. 29–39.
Available at: http://www.vetsci.org/journal/download_pdf.php?spage=29&volume=5&number=1
Perez-Cabal, M. A., de los Campos, G., Vazquez, A. I., Gianola, D., Rosa, G. J. M., Weigel,
K. A. and Alenda, R. (2009) ‘Genetic evaluation
of susceptibility to clinical mastitis in Spanish Holstein cows’, Journal
of Dairy Science, 92(7), pp. 3472–3480. doi: http://dx.doi.org/10.3168/jds.2008-1978
Rambeaud,
M. and Pighetti, G. M. (2005) ‘Impaired neutrophil migration associated with specific bovine CXCR2 Genotypes’, Infection and Immunity,
73(8), pp. 4955–4959. doi:
http://dx.doi.org/10.1128/iai.73.8.4955-4959.2005
Riollet,
C., Rainard, P. and Poutrel,
B. (2000) ‘Differential induction of complement fragment C5a and inflammatory cytokines during intramammary
infections with Escherichia coli and Staphylococcus aureus’,
Clinical and Vaccine Immunology, 7(2), pp. 161–167. doi: http://dx.doi.org/10.1128/cdli.7.2.161-167.2000
Ruban,
S. Yu. and Fedota, O. M.
(2013) ‘The directions of selection organization in the dairy and beef
cattle breeding of Ukraine’ [Napriamy orhanizatsii selektsiinoi roboty v molochnomu ta miasnomu skotarstvi
Ukrainy], Animal Breeding and Genetics [Rozvedennia i henetyka
tvaryn], 47, pp. 5–13. Available
at: http://nbuv.gov.ua/UJRN/rgt_2013_47_3.
[in Ukrainian]
Rupp, R. and Boichard,
D. (2003) ‘Genetics of resistance to mastitis in dairy cattle’, Veterinary
Research, 34(5), pp. 671–688. doi: http://dx.doi.org/10.1051/vetres:2003020
Russell, C. D., Widdison, S., Leigh, J. A. and
Coffey, T. J. (2012) ‘Identification of single nucleotide polymorphisms
in the bovine toll-like receptor 1 gene and association with health traits in
cattle’, [Online] Veterinary Research, 43(17), pp. 1–12. doi: http://dx.doi.org/10.1186/1297-9716-43-17
Sabo, S. and Frigessi,
A. (2004) ‘A genetic and spatial Bayesian analysis of mastitis
resistance’, Genetics Selection Evolution, 36(5), p.
527–542. doi:
http://dx.doi.org/10.1186/1297-9686-36-5-527
Sharif, S., Mallard, B. A. and Sargeant, J. M.
(2000) ‘Presence of glutamine at position 74 of pocket 4 in the BoLA-DR antigen binding groove is associated with occurrence
of clinical mastitis caused by Staphylococcus species’, Veterinary
Immunology and Immunopathology, 76(3–4),
pp. 231–238. doi: http://dx.doi.org/10.1016/s0165-2427(00)00216-6
Sugimoto, M., Uchiza, M. and Kuniyuki, M. (2013) ‘Effects of a Forebrain embryonic
zinc finger-like p.Gly105(12_13) polymorphism on mastitis resistance: An
embryo-transfer study’, [Online] Molecular Biology and Genetic Engineering,
1(1), pp. 1–3. doi: http://dx.doi.org/10.7243/2053-5767-1-1
Takeshima,
S., Matsumoto, Y., Chen, J., Yoshida, T., Mukoyama,
H. and Aida, Y. (2008) ‘Evidence for cattle major histocompatibility
complex (BoLA) class II DQA1
gene heterozygote advantage against clinical mastitis caused by Streptococci
and Escherichia species’, Tissue Antigens, 72(6), pp.
525–531. doi: http://dx.doi.org/10.1111/j.1399-0039.2008.01140.x
Vazquez, A. I., Weigel, K. A., Gianola, D., Bates, D. M., Perez-Cabal, M. A., Rosa, G. J.
M. and Chang, Y. M. (2009) ‘Poisson versus threshold models for genetic
analysis of clinical mastitis in US Holsteins’, Journal of Dairy
Science, 92(10), pp. 5239–5247. doi:
http://dx.doi.org/10.3168/jds.2009-2085
Wang, C., Liu, M., Li, Q., Ju, Z., Huang, J.,
Li, J., Wang, H. and Zhong, J. (2011) ‘Three
novel single-nucleotide polymorphisms of MBL1 gene in
Chinese native cattle and their associations with milk performance
traits’, Veterinary Immunology and Immunopathology,
139(2–4), pp. 229–236. doi:
http://dx.doi.org/10.1016/j.vetimm.2010.10.023
Wang, X. P., Luoreng, Z. M., Gao, S. X., Guo, D. S., Li, J.
Y., Gao, X., Xu, S. Z., Li,
F., Chen, G. and Wang, J. R. (2014) ‘Haplotype
analysis of TLR4 gene and its effects on milk somatic
cell score in Chinese commercial cattle’, Molecular Biology Reports,
41(4), pp. 2345–2351. doi:
http://dx.doi.org/10.1007/s11033-014-3088-7
Wolf, J., Wolfova, M. and Štipkova,
M. (2010) ‘A model for the genetic evaluation of number of clinical
mastitis cases per lactation in Czech Holstein cows’, Journal of Dairy
Science, 93(3), pp. 1193–1204. doi:
http://dx.doi.org/10.3168/jds.2009-2443
Yoshida, T., Furuta,
H., Kondo, Y. and Mukoyama, H. (2011)
‘Association of BoLA-DRB3 alleles with mastitis
resistance and susceptibility in Japanese Holstein cows’, Animal
Science Journal, 83(5), pp. 359–366. doi: http://dx.doi.org/10.1111/j.1740-0929.2011.00972.x