Issue 2
Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
2, Issue 2, July 2016, Pages 27–31
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
Unearthing Anthrax —
application of genotyping for exploring a cryptic life cycle of Bacillus
anthracis in soil
Braun P., von Buttlar H., Woelfel R., Grass G.
Bundeswehr
Institute of Microbiology, Munich, Germany, e-mail: gregorgrass@bundeswehr.org
Download
PDF (print version)
Citation for
print version: Braun, P., von Buttlar, H., Woelfel, R., Grass, G. (2016)
‘Unearthing Anthrax — application of
genotyping for exploring a cryptic life cycle of Bacillus anthracis in
soil’, Journal
for Veterinary Medicine, Biotechnology and Biosafety, 2(2),
pp. 27–31.
Download
PDF (online version)
Citation for
online version: Braun, P., von Buttlar, H., Woelfel, R., Grass, G. (2016)
‘Unearthing Anthrax — application of
genotyping for exploring a cryptic life cycle of Bacillus anthracis in
soil’, Journal
for Veterinary Medicine, Biotechnology and Biosafety.
[Online] 2(2), pp. 27–31. Available at: http://jvmbbs.kharkov.ua/archive/2016/volume2/issue2/oJVMBBS_2016022_027-031.pdf
Summary. Bacillus
anthracis, the etiological agent of the zoonotic disease anthrax is a very
monomorphic species. Typically, the epidemiology of anthrax outbreaks is investigated employing progressive hierarchical resolving
assays using nucleic acids (PHRANA). For resolution of relationships of B. anthracis originating from a single animal
this approach is not suited. In order to close this gap PHRANA can be amended with whole genome sequencing data and
subsequent analysis of Single Nucleotide Polymorphisms (SNPs). Doing so, it was possible to
resolve the genetic diversity of isolates from anthrax outbreaks in Sweden,
Italy as well as of drug use-related infections in Europe. The Swedish outbreak
was confined to a short time-period whereas the
Italian anthrax foci were revisited for analysis ten years after the host
animals have died. Data from the study in Italy contrast with the established
view concerning a strict resting stage of B. anthracis in soil. This
review discusses the plausibility that B. anthracis multiplies in a
limited soil-borne life cycle after the spores have diffused to near the
surface where the bacteria encounter favorable conditions in non-animal hosts
or rhizosphere.
Keywords: Bacillus anthracis, anthrax, soil,
genotyping, life cycle
References:
Agren, J., Finn, M., Bengtsson, B. and Segerman, B. (2014)
‘Microevolution during an anthrax outbreak leading to clonal
heterogeneity and penicillin resistance’, PLoS ONE,
9(2), p. e89112. http://dx.doi.org/10.1371/journal.pone.0089112
Aikembayev, A. M., Lukhnova, L., Temiraliyeva, G., Meka-Mechenko, T.,
Pazylov, Y., Zakaryan, S., Denissov, G., Easterday, W. R., Van Ert, M. N.,
Keim, P., Francesconi, S. C., Blackburn, J. K., Hugh-Jones, M. and Hadfield, T.
(2010) ‘Historical distribution and molecular diversity of Bacillus
anthracis, Kazakhstan’, Emerging Infectious Diseases, 16(5),
pp. 789–796. http://dx.doi.org/10.3201/eid1605.091427
Antwerpen, M., Ilin, D., Georgieva, E., Meyer, H., Savov, E. and
Frangoulidis, D. (2011) ‘MLVA and SNP analysis identified a unique
genetic cluster in Bulgarian Bacillus anthracis strains’, European
Journal of Clinical Microbiology and Infectious Diseases, 30(7), pp.
923–930. http://dx.doi.org/10.1007/s10096-011-1177-2
Braun, P., Grass, G., Aceti, A., Serrecchia, L., Affuso, A., Marino, L.,
Grimaldi, S., Pagano, S., Hanczaruk, M., Georgi, E., Northoff, B., Scholer, A.,
Schloter, M., Antwerpen, M. and Fasanella, A. (2015) ‘Microevolution of
anthrax from a young ancestor (M.A.Y.A.) suggests a soil-borne life cycle of Bacillus
anthracis’, PLoS ONE, 10(8), p. e0135346. http://dx.doi.org/10.1371/journal.pone.0135346
Dey, R., Hoffman, P. S. and Glomski, I. J.
(2012) ‘Germination and amplification of anthrax spores by soil-dwelling
Amoebas’, Applied and Environmental Microbiology, 78(22), pp.
8075–8081. http://dx.doi.org/10.1128/aem.02034-12
Fasanella, A., Di Taranto, P., Garofolo, G., Colao, V., Marino, L.,
Buonavoglia, D., Pedarra, C., Adone, R. and Hugh-Jones, M. (2013) ‘Ground
Anthrax Bacillus Refined Isolation (GABRI) method for analyzing environmental
samples with low levels of Bacillus anthracis contamination’, BMC
Microbiology, 13(1), p. 167. http://dx.doi.org/10.1186/1471-2180-13-167
Fasanella, A., Garofolo, G., Galante, D., Quaranta, V., Palazzo, L.,
Lista, F., Adone, R. and Jones, M. H. (2010) ‘Severe anthrax outbreaks in
Italy in 2004: Considerations on factors involved in the spread of
infection’, The New Microbiologica, 33(1), pp. 83–86.
Available at: http://www.newmicrobiologica.org/PUB/allegati_pdf/2010/1/83.pdf
Hugh-Jones, M. and Blackburn, J. (2009)
‘The ecology of Bacillus anthracis’, Molecular Aspects of
Medicine, 30(6), pp. 356–367. http://dx.doi.org/10.1016/j.mam.2009.08.003
Keim, P., Grunow, R., Vipond, R., Grass,
G., Hoffmaster, A., Birdsell, D. N., Klee, S. R., Pullan, S., Antwerpen, M.,
Bayer, B. N., Latham, J., Wiggins, K., Hepp, C., Pearson, T., Brooks, T., Sahl,
J. and Wagner, D. M. (2015) ‘Whole genome analysis of injectional anthrax
identifies two disease clusters spanning more than 13 years’, EBioMedicine,
2(11), pp. 1613– 1618. http://dx.doi.org/10.1016/j.ebiom.2015.10.004
Keim, P., Van Ert, M. N., Pearson, T., Vogler, A. J., Huynh, L. Y. and
Wagner, D.M. (2004) ‘Anthrax molecular epidemiology and forensics: Using
the appropriate marker for different evolutionary scales’, Infection,
Genetics and Evolution, 4(3), pp. 205–213. http://dx.doi.org/10.1016/j.meegid.2004.02.005
Okinaka, R. T., Cloud, K., Hampton, O., Hoffmaster, A. R., Hill, K. K.,
Keim, P., Koehler, T. M., Lamke, G., Kumano, S., Mahillon, J., Manter, D.,
Martinez, Y., Ricke, D., Svensson, R. and Jackson, P. J. (1999) ‘Sequence
and organization of pXO1, the large Bacillus anthracis plasmid harboring
the anthrax toxin genes’, Journal of Bacteriology, 181(20), pp.
6509–6515. Available at: http://jb.asm.org/content/181/20/6509.full.pdf
Saile, E. and Koehler, T. M. (2006)
‘Bacillus anthracis multiplication, persistence, and genetic
exchange in the rhizosphere of grass plants’, Applied and
Environmental Microbiology, 72(5), pp. 3168–3174. http://dx.doi.org/10.1128/aem.72.5.3168-3174.2006
Schuch, R. and Fischetti, V. A. (2009) ‘The
secret life of the anthrax agent Bacillus anthracis:
Bacteriophage-mediated ecological adaptations’, PLoS ONE, 4(8), p.
e6532. http://dx.doi.org/10.1371/journal.pone.0006532
Sterne, M. (1959) ‘Anthrax’,
in Stableforth, A. W. and Galloway, I. A. (eds.) Infectious diseases of animals:
Disease due to Bacteria. London:
Butterworths, pp. 16–52.
Stratilo, C. W. and Bader, D. E. (2012) ‘Genetic diversity among Bacillus
anthracis soil isolates at fine geographic scales’, Applied and
Environmental Microbiology, 78(18), pp. 6433– 6437. http://dx.doi.org/10.1128/aem.01036-12
Turnbull, P. (ed.) (2008) Anthrax in humans and animals. 4th ed. Geneva: World Health Organization. ISBN 9789241547536. Available at: http://www.ncbi.nlm.nih.gov/books/NBK310486/pdf/Bookshelf_NBK310486.pdf
Van Ert, M. N., Easterday, W. R., Huynh,
L. Y., Okinaka, R. T., Hugh-Jones, M. E., Ravel, J., Zanecki, S. R., Pearson,
T., Simonson, T. S., U’Ren, J. M., Kachur, S. M., Leadem-Dougherty, R.
R., Rhoton, S. D., Zinser, G., Farlow, J., Coker, P. R., Smith, K. L., Wang,
B., Kenefic, L. J., Fraser- Liggett, C. M., Wagner, D. M. and Keim, P. (2007)
‘Global genetic population structure of Bacillus anthracis’,
PLoS ONE, 2(5), p. e461. http://dx.doi.org/10.1371/journal.pone.0000461
Van Ness, G. B. (1971) ‘Ecology of
anthrax’, Science, 172(3990), pp. 1303–1307. http://dx.doi.org/10.1126/science.172.3990.1303