Issue 2

Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 2, Issue 2, July 2016, Pages 27–31

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

Unearthing Anthrax — application of genotyping for exploring a cryptic life cycle of Bacillus anthracis in soil

Braun P., von Buttlar H., Woelfel R., Grass G.

Bundeswehr Institute of Microbiology, Munich, Germany, e-mail: gregorgrass@bundeswehr.org

Download PDF (print version)

Citation for print version: Braun, P., von Buttlar, H., Woelfel, R., Grass, G. (2016) ‘Unearthing Anthrax — application of genotyping for exploring a cryptic life cycle of Bacillus anthracis in soil’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 2(2), pp. 27–31.

Download PDF (online version)

Citation for online version: Braun, P., von Buttlar, H., Woelfel, R., Grass, G. (2016) ‘Unearthing Anthrax — application of genotyping for exploring a cryptic life cycle of Bacillus anthracis in soil’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 2(2), pp. 27–31. Available at: http://jvmbbs.kharkov.ua/archive/2016/volume2/issue2/oJVMBBS_2016022_027-031.pdf

Summary. Bacillus anthracis, the etiological agent of the zoonotic disease anthrax is a very monomorphic species. Typically, the epidemiology of anthrax outbreaks is investigated employing progressive hierarchical resolving assays using nucleic acids (PHRANA). For resolution of relationships of B. anthracis originating from a single animal this approach is not suited. In order to close this gap PHRANA can be amended with whole genome sequencing data and subsequent analysis of Single Nucleotide Polymorphisms (SNPs). Doing so, it was possible to resolve the genetic diversity of isolates from anthrax outbreaks in Sweden, Italy as well as of drug use-related infections in Europe. The Swedish outbreak was confined to a short time-period whereas the Italian anthrax foci were revisited for analysis ten years after the host animals have died. Data from the study in Italy contrast with the established view concerning a strict resting stage of B. anthracis in soil. This review discusses the plausibility that B. anthracis multiplies in a limited soil-borne life cycle after the spores have diffused to near the surface where the bacteria encounter favorable conditions in non-animal hosts or rhizosphere.

Keywords: Bacillus anthracis, anthrax, soil, genotyping, life cycle

References:

Agren, J., Finn, M., Bengtsson, B. and Segerman, B. (2014) ‘Microevolution during an anthrax outbreak leading to clonal heterogeneity and penicillin resistance’, PLoS ONE, 9(2), p. e89112. http://dx.doi.org/10.1371/journal.pone.0089112

Aikembayev, A. M., Lukhnova, L., Temiraliyeva, G., Meka-Mechenko, T., Pazylov, Y., Zakaryan, S., Denissov, G., Easterday, W. R., Van Ert, M. N., Keim, P., Francesconi, S. C., Blackburn, J. K., Hugh-Jones, M. and Hadfield, T. (2010) ‘Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan’, Emerging Infectious Diseases, 16(5), pp. 789–796. http://dx.doi.org/10.3201/eid1605.091427

Antwerpen, M., Ilin, D., Georgieva, E., Meyer, H., Savov, E. and Frangoulidis, D. (2011) ‘MLVA and SNP analysis identified a unique genetic cluster in Bulgarian Bacillus anthracis strains’, European Journal of Clinical Microbiology and Infectious Diseases, 30(7), pp. 923–930. http://dx.doi.org/10.1007/s10096-011-1177-2

Braun, P., Grass, G., Aceti, A., Serrecchia, L., Affuso, A., Marino, L., Grimaldi, S., Pagano, S., Hanczaruk, M., Georgi, E., Northoff, B., Scholer, A., Schloter, M., Antwerpen, M. and Fasanella, A. (2015) ‘Microevolution of anthrax from a young ancestor (M.A.Y.A.) suggests a soil-borne life cycle of Bacillus anthracis’, PLoS ONE, 10(8), p. e0135346. http://dx.doi.org/10.1371/journal.pone.0135346

Dey, R., Hoffman, P. S. and Glomski, I. J. (2012) ‘Germination and amplification of anthrax spores by soil-dwelling Amoebas’, Applied and Environmental Microbiology, 78(22), pp. 8075–8081. http://dx.doi.org/10.1128/aem.02034-12

Fasanella, A., Di Taranto, P., Garofolo, G., Colao, V., Marino, L., Buonavoglia, D., Pedarra, C., Adone, R. and Hugh-Jones, M. (2013) ‘Ground Anthrax Bacillus Refined Isolation (GABRI) method for analyzing environmental samples with low levels of Bacillus anthracis contamination’, BMC Microbiology, 13(1), p. 167. http://dx.doi.org/10.1186/1471-2180-13-167

Fasanella, A., Garofolo, G., Galante, D., Quaranta, V., Palazzo, L., Lista, F., Adone, R. and Jones, M. H. (2010) ‘Severe anthrax outbreaks in Italy in 2004: Considerations on factors involved in the spread of infection’, The New Microbiologica, 33(1), pp. 83–86. Available at: http://www.newmicrobiologica.org/PUB/allegati_pdf/2010/1/83.pdf

Hugh-Jones, M. and Blackburn, J. (2009) ‘The ecology of Bacillus anthracis’, Molecular Aspects of Medicine, 30(6), pp. 356–367. http://dx.doi.org/10.1016/j.mam.2009.08.003

Keim, P., Grunow, R., Vipond, R., Grass, G., Hoffmaster, A., Birdsell, D. N., Klee, S. R., Pullan, S., Antwerpen, M., Bayer, B. N., Latham, J., Wiggins, K., Hepp, C., Pearson, T., Brooks, T., Sahl, J. and Wagner, D. M. (2015) ‘Whole genome analysis of injectional anthrax identifies two disease clusters spanning more than 13 years’, EBioMedicine, 2(11), pp. 1613– 1618. http://dx.doi.org/10.1016/j.ebiom.2015.10.004

Keim, P., Van Ert, M. N., Pearson, T., Vogler, A. J., Huynh, L. Y. and Wagner, D.M. (2004) ‘Anthrax molecular epidemiology and forensics: Using the appropriate marker for different evolutionary scales’, Infection, Genetics and Evolution, 4(3), pp. 205–213. http://dx.doi.org/10.1016/j.meegid.2004.02.005

Okinaka, R. T., Cloud, K., Hampton, O., Hoffmaster, A. R., Hill, K. K., Keim, P., Koehler, T. M., Lamke, G., Kumano, S., Mahillon, J., Manter, D., Martinez, Y., Ricke, D., Svensson, R. and Jackson, P. J. (1999) ‘Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes’, Journal of Bacteriology, 181(20), pp. 6509–6515. Available at: http://jb.asm.org/content/181/20/6509.full.pdf

Saile, E. and Koehler, T. M. (2006) ‘Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants’, Applied and Environmental Microbiology, 72(5), pp. 3168–3174. http://dx.doi.org/10.1128/aem.72.5.3168-3174.2006

Schuch, R. and Fischetti, V. A. (2009) ‘The secret life of the anthrax agent Bacillus anthracis: Bacteriophage-mediated ecological adaptations’, PLoS ONE, 4(8), p. e6532. http://dx.doi.org/10.1371/journal.pone.0006532

Sterne, M. (1959) ‘Anthrax’, in Stableforth, A. W. and Galloway, I. A. (eds.) Infectious diseases of animals: Disease due to Bacteria. London: Butterworths, pp. 16–52.

Stratilo, C. W. and Bader, D. E. (2012) ‘Genetic diversity among Bacillus anthracis soil isolates at fine geographic scales’, Applied and Environmental Microbiology, 78(18), pp. 6433– 6437. http://dx.doi.org/10.1128/aem.01036-12

Turnbull, P. (ed.) (2008) Anthrax in humans and animals. 4th ed. Geneva: World Health Organization. ISBN 9789241547536. Available at: http://www.ncbi.nlm.nih.gov/books/NBK310486/pdf/Bookshelf_NBK310486.pdf

Van Ert, M. N., Easterday, W. R., Huynh, L. Y., Okinaka, R. T., Hugh-Jones, M. E., Ravel, J., Zanecki, S. R., Pearson, T., Simonson, T. S., U’Ren, J. M., Kachur, S. M., Leadem-Dougherty, R. R., Rhoton, S. D., Zinser, G., Farlow, J., Coker, P. R., Smith, K. L., Wang, B., Kenefic, L. J., Fraser- Liggett, C. M., Wagner, D. M. and Keim, P. (2007) ‘Global genetic population structure of Bacillus anthracis’, PLoS ONE, 2(5), p. e461. http://dx.doi.org/10.1371/journal.pone.0000461

Van Ness, G. B. (1971) ‘Ecology of anthrax’, Science, 172(3990), pp. 1303–1307. http://dx.doi.org/10.1126/science.172.3990.1303