Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 9, Issue 1–2, June 2023, Pages 12–19

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

COMPARATIVE ANALYSIS OF THE OPEN READING FRAMES PROTEIN GENES OF GENOTYPE 4 HEPATITIS E VIRUS IN SWINE AND WILD BOAR

Lymanska О. Yu.

National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: olgaliman@ukr.net

Download PDF (print version)

Citation for print version: Lymanska, О. Yu. (2023) ‘Comparative analysis of the open reading frames protein genes of genotype 4 Hepatitis E virus in swine and wild boar’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 9(1–2), pp. 12–19.

Download PDF (online version)

Citation for online version: Lymanska, О. Yu. (2023) ‘Comparative analysis of the open reading frames protein genes of genotype 4 Hepatitis E virus in swine and wild boar’, Journal for Veterinary Medicine, Biotechnology and Biosafety. [Online] 9(1–2), pp. 12–19. DOI: 10.36016/JVMBBS-2023-9-1-2-3.

Summary. The goal of this study was to determine the molecular diversity of the open reading frames (ORFs) ORF1, ORF2, ORF3 protein genes from full-length genomes of genotype 4 hepatitis E virus (HEV) from pigs and wild boars at protein and gene level. Statistical technique Shannon entropy was used for mutational analysis of ORF1–ORF3 protein genes to identify amino acid substitutions in the HEV‑4 sequences isolated from pigs and wild boars that were most susceptible to mutations. Gene selective pressure for genes was estimated using Tajima’s neutrality test. The ORF regions of 11 swine and 11 wild boar genotype 4 HEV isolates with complete genomes from the GenBank database were analyzed comparatively. The total number of polymorphic sites was determined. Nonsynonymous (amino acid changing) and synonymous (amino acid preserving) substitutions were identified in ORF1, ORF2, ORF3 in swine and wild boar HEV‑4 isolates. No evidence of recombination was found for ORFs in 11 swine HEV‑4 isolates, ORF2, ORF3 in 8 wild boar HEV‑4 isolates. However, a recombination fragment with a length of 430 nucleotides was detected in the ORF1 gene of 3 wild boar HEV‑4 isolates. Positive D Tajima factors were determined for ORF1, ORF2, ORF3 genes of swine HEV‑4 and ORF1, ORF2 genes of wild boar HEV‑4. While a negative value of D Tajima’s factor was determined for ORF3 gene of wild boar HEV‑4. Molecular characteristics showing principal distinctions between the open-reading frames of swine and wild boar genotype 4 hepatitis E virus were obtained. Wild boar ORF1 is characterized by lower nucleotide diversity π value (0.144) and higher number of segregated sites S value (1,688) comparing with higher π value (0.159) and lower S value (1,602) of swine ORF1. Positive values of D Tajima’s factor for ORF1, ORF2 ORF3 genes of swine HEV‑4 and ORF1, ORF2 genes of wild boar HEV‑4 show on positive selection of these genes. Negative value of D Tajima’s factor for ORF3 gene of wild boar HEV‑4 indicates onto purifying selection decreasing variability in ORF3 gene of wild boar HEV‑4. The largest number of amino acid variation sites (19.2%) was found for wild boar HEV‑4 ORF3 followed by swine HEV‑4 ORF3 (15.7%) comparing with other swine and wild boars HEV‑4 ORFs

Keywords: mutational analysis, entropy analysis, Tajima’s neutrality test, positive selection, purifying selection

References:

Ahmad, I., Holla, R. P. and Jameel, S. (2011) ‘Molecular virology of hepatitis E virus’, Virus Research, 161(1), pp. 47–58. doi: 10.1016/j.virusres.2011.02.011.

Aziz, R., Sen, P., Beura, P. K., Das, S., Tula, D., Dash, M., Namsa, N. D., Deka, R. C., Feil, E. J., Satapathy, S. S. and Ray, S. K. (2022) ‘Incorporation of transition to transversion ratio and nonsense mutations, improves the estimation of the number of synonymous and non-synonymous sites in codons’, DNA Research, 29(4), p. dsac023. doi: 10.1093/dnares/dsac023.

Boadella, M. (2015) ‘Hepatitis E in wild ungulates: A review’, Small Ruminant Research, 128, pp. 64–71. doi: 10.1016/j.smallrumres.2015.03.007.

Bouquet, J., Cherel, P. and Pavio, N. (2012) ‘Genetic characterization and codon usage bias of full-length hepatitis E virus sequences shed new lights on genotypic distribution, host restriction and genome evolution’, Infection, Genetics and Evolution, 12(8), pp. 1842–1853. doi: 10.1016/j.meegid.2012.07.021.

Brayne, A. B., Dearlove, B. L., Lester, J. S., Kosakovsky Pond, S. L. and Frost, S. D. W. (2017) ‘Genotype-specific evolution of hepatitis E virus’, Journal of Virology, 91(9), pp. e02241–16. doi: 10.1128/JVI.02241-16.

Chen, X., Zhang, Q., He, C., Zhang, L., Li, J., Zhang, W., Cao, W., Lv, Y.-G., Liu, Z., Zhang, J.-X. and Shao, Z.-J. (2012) ‘Recombination and natural selection in hepatitis E virus genotypes’, Journal of Medical Virology, 84(9), pp. 1396–1407. doi: 10.1002/jmv.23237.

Dasmeh, P., Serohijos, A. W. R., Kepp, K. P. and Shakhnovich, E. I. (2014) ‘The influence of selection for protein stability on dN/dS estimations’, Genome Biology and Evolution, 6(10), pp. 2956–2967. doi: 10.1093/gbe/evu223.

Domingo, E. and Holland, J. J. (1997) ‘RNA virus mutations and fitness for survival’, Annual Review of Microbiology, 51(1), pp. 151–178. doi: 10.1146/annurev.micro.51.1.151.

Fredriksson-Ahomaa, M. (2019) ‘Wild boar: A reservoir of foodborne zoonoses’, Foodborne Pathogens and Disease, 16(3), pp. 153–165. doi: 10.1089/fpd.2018.2512.

Fu, Y.-X. (1997) ‘Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection’, Genetics, 147(2), pp. 915–925. doi: 10.1093/genetics/147.2.915.

Fu, Y. X. and Li, W. H. (1993) ‘Statistical tests of neutrality of mutations’, Genetics, 133(3), pp. 693–709. doi: 10.1093/genetics/133.3.693.

Gibbs, M. J., Armstrong, J. S. and Gibbs, A. J. (2000) ‘Sister-Scanning: A Monte Carlo procedure for assessing signals in recombinant sequences’, Bioinformatics, 16(7), pp. 573–582. doi: 10.1093/bioinformatics/16.7.573.

Grierson, S. S., McGowan, S., Cook, C., Steinbach, F. and Choudhury, B. (2019) ‘Molecular and in vitro characterisation of hepatitis E virus from UK pigs’, Virology, 527, pp. 116–121. doi: 10.1016/j.virol.2018.10.018.

Gutierrez, B., Escalera-Zamudio, M. and Pybus, O. G. (2019) ‘Parallel molecular evolution and adaptation in viruses’, Current Opinion in Virology, 34, pp. 90–96. doi: 10.1016/j.coviro.2018.12.006.

Hall, T. A. (2013) BioEdit v 7.2. 3. Biological Sequence Alignment Editor for Win 95/98/NT/2K/XP7. Carlsbad, California: Ibis Biosciences.

Iaconelli, M., Bonanno Ferraro, G., Mancini, P., Suffredini, E., Veneri, C., Ciccaglione, A. R., Bruni, R., Della Libera, S., Bignami, F., Brambilla, M., De Medici, D., Brandtner, D., Schembri, P., D’Amato, S. and La Rosa, G. (2020) ‘Nine-year nationwide environmental surveillance of hepatitis E virus in urban wastewaters in Italy (2011–2019)’, International Journal of Environmental Research and Public Health, 17(6), p. 2059. doi: 10.3390/ijerph17062059.

Jadhav, A., Zhao, L., Liu, W., Ding, C., Nair, V., Ramos-Onsins, S. E. and Ferretti, L. (2020) ‘Genomic diversity and evolution of quasispecies in Newcastle disease virus infections’, Viruses, 12(11), p. 1305. doi: 10.3390/v12111305.

Kenney, S. P. and Meng, X.-J. (2019) ‘Hepatitis E virus genome structure and replication strategy’, Cold Spring Harbor Perspectives in Medicine, 9(1), p. a031724. doi: 10.1101/cshperspect.a031724.

Kimura, M. (1991) ‘The neutral theory of molecular evolution: A review of recent evidence.’, The Japanese Journal of Genetics, 66(4), pp. 367–386. doi: 10.1266/jjg.66.367.

Kordyum, V. A. (2001) ‘Viruses evolution — an attempt of non-linear prognosis’, Biopolymers and Cell, 17(6), pp. 467–486. doi: 10.7124/bc.0005D6.

Lara, J., Purdy, M. A. and Khudyakov, Y. E. (2014) ‘Genetic host specificity of hepatitis E virus’, Infection, Genetics and Evolution, 24, pp. 127–139. doi: 10.1016/j.meegid.2014.03.011.

Lauring, A. S. and Andino, R. (2010) ‘Quasispecies theory and the behavior of RNA viruses’, PLoS Pathogens, 6(7), p. e1001005. doi: 10.1371/journal.ppat.1001005.

Lhomme, S., Abravanel, F., Dubois, M., Sandres-Saune, K., Rostaing, L., Kamar, N. and Izopet, J. (2012) ‘Hepatitis E virus quasispecies and the outcome of acute hepatitis E in solid-organ transplant patients’, Journal of Virology, 86(18), pp. 10006–10014. doi: 10.1128/JVI.01003-12.

Martin, D. and Rybicki, E. (2000) ‘RDP: detection of recombination amongst aligned sequences’, Bioinformatics, 16(6), pp. 562–563. doi: 10.1093/bioinformatics/16.6.562.

Martin, D. P., Posada, D., Crandall, K. A. and Williamson, C. (2005) ‘A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints’, AIDS Research and Human Retroviruses, 21(1), pp. 98–102. doi: 10.1089/aid.2005.21.98.

Martin, D. P., Murrell, B., Golden, M., Khoosal, A. and Muhire, B. (2015) ‘RDP4: Detection and analysis of recombination patterns in virus genomes’, Virus Evolution, 1(1), p. vev003. doi: 10.1093/ve/vev003.

Mohamed, N. S., Ali Albsheer, M. M., Abdelbagi, H., Siddig, E. E., Mohamed, M. A., Ahmed, A. E., Omer, R. A., Muneer, M. S., Ahmed, A., Osman, H. A., Ali, M. S., Eisa, I. M. and Elbasheir, M. M. (2019) ‘Genetic polymorphism of the N-terminal region in circumsporozoite surface protein of Plasmodium falciparum field isolates from Sudan’, Malaria Journal, 18(1), p. 333. doi: 10.1186/s12936-019-2970-0.

Muñoz-Chimeno, M., Rodriguez-Paredes, V., García-Lugo, M. A. and Avellon, A. (2022) ‘Hepatitis E genotype 3 genome: A comprehensive analysis of entropy, motif conservation, relevant mutations, and clade-associated polymorphisms’, Frontiers in Microbiology, 13, p. 1011662. doi: 10.3389/fmicb.2022.1011662.

Nan, Y., Wu, C., Zhao, Q. and Zhou, E.-M. (2017) ‘Zoonotic hepatitis E virus: An ignored risk for public health’, Frontiers in Microbiology, 8, p. 2396. doi: 10.3389/fmicb.2017.02396.

Niczyporuk, J. S., Kozdrun, W., Czekaj, H., Piekarska, K. and Stys-Fijoł, N. (2020) ‘Isolation and molecular characterization of Fowl adenovirus strains in Black grouse: First reported case in Poland’, PLoS One, 15(9), p. e0234532. doi: 10.1371/journal.pone.0234532.

Ohnishi, S., Kang, J., Maekubo, H., Arakawa, T., Karino, Y., Toyota, J., Takahashi, K. and Mishiro, S. (2006) ‘Comparison of clinical features of acute hepatitis caused by hepatitis E virus (HEV) genotypes 3 and 4 in Sapporo, Japan’, Hepatology Research, 36(4), pp. 301–307. doi: 10.1016/j.hepres.2006.08.002.

Okamoto, H. (2007) ‘Genetic variability and evolution of hepatitis E virus’, Virus Research, 127(2), pp. 216–228. doi: 10.1016/j.virusres.2007.02.002.

Padidam, M., Sawyer, S. and Fauquet, C. M. (1999) ‘Possible emergence of new geminiviruses by frequent recombination’, Virology, 265(2), pp. 218–225. doi: 10.1006/viro.1999.0056.

Pavio, N., Meng, X.-J. and Renou, C. (2010) ‘Zoonotic hepatitis E: animal reservoirs and emerging risks’, Veterinary Research, 41(6), p. 46. doi: 10.1051/vetres/2010018.

Perumpail, R. B., Ahmed, A., Higgins, J. P., So, S. K., Cochran, J. L., Drobeniuc, J., Mixson-Hayden, T. R. and Teo, C.-G. (2015) ‘Fatal accelerated cirrhosis after imported HEV genotype 4 infection’, Emerging Infectious Diseases, 21(9), pp. 1679–1681. doi: 10.3201/eid2109.150300.

Reyes, G. R., Purdy, M. A., Kim, J., Luk, K.-C., Young, L. M., Fry, K. E. and Bradley, D. W. (1990) ‘Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis’, Science, 247(4948), pp. 1335–1339. doi: 10.1126/science.2107574.

Salines, M., Andraud, M. and Rose, N. (2017) ‘From the epidemiology of hepatitis E virus (HEV) within the swine reservoir to public health risk mitigation strategies: A comprehensive review’, Veterinary Research, 48(1), p. 31. doi: 10.1186/s13567-017-0436-3.

Shannon, C. E. (1997) ‘The mathematical theory of communication. 1963’, M. D. Computing: Computers in Medical Practice, 14(4), pp. 306–317. PMID: 9230594.

Smith, D. B., Vanek, J., Ramalingam, S., Johannessen, I., Templeton, K. and Simmonds, P. (2012) ‘Evolution of the hepatitis E virus hypervariable region’, Journal of General Virology, 93(11), pp. 2408–2418. doi: 10.1099/vir.0.045351-0.

Smith, J. (1992) ‘Analyzing the mosaic structure of genes’, Journal of Molecular Evolution, 34(2), pp. 126–129. doi: 10.1007/BF00182389.

Sun, J., Ren, C., Huang, Y., Chao, W. and Xie, F. (2020) ‘The effects of synonymous codon usages on genotypic formation of open reading frames in hepatitis E virus’, Infection, Genetics and Evolution, 85, p. 104450. doi: 10.1016/j.meegid.2020.104450.

Tajima, F. (1989) ‘Statistical method for testing the neutral mutation hypothesis by DNA polymorphism’, Genetics, 123(3), pp. 585–595. doi: 10.1093/genetics/123.3.585.

Takahashi, M. and Okamoto, H. (2014) ‘Features of hepatitis E virus infection in humans and animals in Japan: HEV infection in Japan’, Hepatology Research, 44(1), pp. 43–58. doi: 10.1111/hepr.12175.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) ‘MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0’, Molecular Biology and Evolution, 30(12), pp. 2725–2729. doi: 10.1093/molbev/mst197.

Van Tong, H., Hoan, N. X., Wang, B., Wedemeyer, H., Bock, C.-T. and Velavan, T. P. (2016) ‘Hepatitis E virus mutations: Functional and clinical relevance’, EBioMedicine, 11, pp. 31–42. doi: 10.1016/j.ebiom.2016.07.039.

Wang, B. and Meng, X.-J. (2021) ‘Structural and molecular biology of hepatitis E virus’, Computational and Structural Biotechnology Journal, 19, pp. 1907–1916. doi: 10.1016/j.csbj.2021.03.038.

Yang, Z. and Bielawski, J. P. (2000) ‘Statistical methods for detecting molecular adaptation’, Trends in Ecology & Evolution, 15(12), pp. 496–503. doi: 10.1016/S0169-5347(00)01994-7.

Yin, X., Ying, D., Lhomme, S., Tang, Z., Walker, C. M., Xia, N., Zheng, Z. and Feng, Z. (2018) ‘Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection’, Proceedings of the National Academy of Sciences, 115(18), pp. 4773–4778. doi: 10.1073/pnas.1721345115.