Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
9, Issue 1–2, June 2023, Pages 12–19
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
COMPARATIVE ANALYSIS OF THE OPEN READING
FRAMES PROTEIN GENES OF GENOTYPE 4 HEPATITIS E VIRUS IN SWINE AND
WILD BOAR
Lymanska О. Yu.
National Scientific
Center ‘Institute of Experimental and Clinical Veterinary Medicine’,
Kharkiv, Ukraine, e-mail: olgaliman@ukr.net
Download
PDF (print version)
Citation for print version: Lymanska, О. Yu. (2023)
‘Comparative analysis of the open reading frames protein genes of
genotype 4 Hepatitis E virus in swine and wild boar’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 9(1–2), pp. 12–19.
Download
PDF (online version)
Citation for online version: Lymanska, О. Yu. (2023)
‘Comparative analysis of the open reading frames protein genes of
genotype 4 Hepatitis E virus in swine and wild boar’, Journal for Veterinary Medicine, Biotechnology and
Biosafety. [Online] 9(1–2), pp. 12–19. DOI: 10.36016/JVMBBS-2023-9-1-2-3.
Summary. The goal of this study was to determine the
molecular diversity of the open reading frames (ORFs) ORF1, ORF2, ORF3 protein
genes from full-length genomes of genotype 4 hepatitis E virus (HEV)
from pigs and wild boars at protein and gene level. Statistical technique
Shannon entropy was used for mutational analysis of ORF1–ORF3 protein
genes to identify amino acid substitutions in the HEV‑4 sequences
isolated from pigs and wild boars that were most susceptible to mutations. Gene
selective pressure for genes was estimated using Tajima’s neutrality
test. The ORF regions of 11 swine and 11 wild boar genotype 4
HEV isolates with complete genomes from the GenBank database were analyzed
comparatively. The total number of polymorphic sites was determined.
Nonsynonymous (amino acid changing) and synonymous (amino acid preserving)
substitutions were identified in ORF1, ORF2, ORF3 in swine and wild boar HEV‑4
isolates. No evidence of recombination was found for ORFs in 11 swine
HEV‑4 isolates, ORF2, ORF3 in 8 wild boar HEV‑4 isolates.
However, a recombination fragment with a length of 430 nucleotides was
detected in the ORF1 gene of 3 wild boar HEV‑4 isolates. Positive D
Tajima factors were determined for ORF1, ORF2, ORF3 genes of swine HEV‑4
and ORF1, ORF2 genes of wild boar HEV‑4. While a negative value of D
Tajima’s factor was determined for ORF3 gene of wild boar HEV‑4.
Molecular characteristics showing principal distinctions between the
open-reading frames of swine and wild boar genotype 4 hepatitis E
virus were obtained. Wild boar ORF1 is characterized by lower nucleotide
diversity π value (0.144)
and higher number of segregated sites S value (1,688) comparing with higher π value (0.159) and lower S
value (1,602) of swine ORF1. Positive values of D Tajima’s factor
for ORF1, ORF2 ORF3 genes of swine HEV‑4 and ORF1, ORF2 genes of wild
boar HEV‑4 show on positive selection of these genes. Negative value of D
Tajima’s factor for ORF3 gene of wild boar HEV‑4 indicates onto
purifying selection decreasing variability in ORF3 gene of wild boar HEV‑4.
The largest number of amino acid variation sites (19.2%) was found for wild
boar HEV‑4 ORF3 followed by swine HEV‑4 ORF3 (15.7%) comparing with
other swine and wild boars HEV‑4 ORFs
Keywords: mutational analysis, entropy analysis, Tajima’s
neutrality test, positive selection, purifying selection
References:
Ahmad, I., Holla, R. P. and
Jameel, S. (2011) ‘Molecular virology of hepatitis E virus’,
Virus Research, 161(1), pp. 47–58. doi: 10.1016/j.virusres.2011.02.011.
Aziz, R., Sen, P., Beura, P. K.,
Das, S., Tula, D., Dash, M., Namsa, N. D.,
Deka, R. C., Feil, E. J., Satapathy, S. S. and
Ray, S. K. (2022) ‘Incorporation of transition to transversion
ratio and nonsense mutations, improves the estimation of the number of
synonymous and non-synonymous sites in codons’, DNA Research,
29(4), p. dsac023. doi: 10.1093/dnares/dsac023.
Boadella, M. (2015) ‘Hepatitis E in wild
ungulates: A review’, Small Ruminant Research, 128,
pp. 64–71. doi: 10.1016/j.smallrumres.2015.03.007.
Bouquet, J., Cherel, P. and Pavio, N. (2012)
‘Genetic characterization and codon usage bias of full-length hepatitis E
virus sequences shed new lights on genotypic distribution, host restriction and
genome evolution’, Infection, Genetics and Evolution, 12(8),
pp. 1842–1853. doi: 10.1016/j.meegid.2012.07.021.
Brayne, A. B., Dearlove, B. L.,
Lester, J. S., Kosakovsky Pond, S. L. and
Frost, S. D. W. (2017) ‘Genotype-specific evolution of hepatitis E
virus’, Journal of Virology, 91(9), pp. e02241–16. doi:
10.1128/JVI.02241-16.
Chen, X., Zhang, Q., He, C.,
Zhang, L., Li, J., Zhang, W., Cao, W., Lv, Y.-G.,
Liu, Z., Zhang, J.-X. and Shao, Z.-J. (2012) ‘Recombination
and natural selection in hepatitis E virus genotypes’, Journal of
Medical Virology, 84(9), pp. 1396–1407. doi: 10.1002/jmv.23237.
Dasmeh, P., Serohijos, A. W. R.,
Kepp, K. P. and Shakhnovich, E. I. (2014) ‘The
influence of selection for protein stability on dN/dS estimations’, Genome
Biology and Evolution, 6(10), pp. 2956–2967. doi: 10.1093/gbe/evu223.
Domingo, E. and Holland, J. J. (1997) ‘RNA
virus mutations and fitness for survival’, Annual Review of
Microbiology, 51(1), pp. 151–178. doi: 10.1146/annurev.micro.51.1.151.
Fredriksson-Ahomaa, M. (2019) ‘Wild boar: A
reservoir of foodborne zoonoses’, Foodborne Pathogens and Disease,
16(3), pp. 153–165. doi: 10.1089/fpd.2018.2512.
Fu, Y.-X. (1997) ‘Statistical tests of
neutrality of mutations against population growth, hitchhiking and background
selection’, Genetics, 147(2), pp. 915–925. doi: 10.1093/genetics/147.2.915.
Fu, Y. X. and Li, W. H.
(1993) ‘Statistical tests of neutrality of mutations’, Genetics,
133(3), pp. 693–709. doi: 10.1093/genetics/133.3.693.
Gibbs, M. J., Armstrong, J. S. and
Gibbs, A. J. (2000) ‘Sister-Scanning: A Monte Carlo procedure
for assessing signals in recombinant sequences’, Bioinformatics,
16(7), pp. 573–582. doi: 10.1093/bioinformatics/16.7.573.
Grierson, S. S., McGowan, S., Cook, C.,
Steinbach, F. and Choudhury, B. (2019) ‘Molecular and in vitro characterisation of hepatitis E
virus from UK pigs’, Virology, 527, pp. 116–121. doi: 10.1016/j.virol.2018.10.018.
Gutierrez, B., Escalera-Zamudio, M. and
Pybus, O. G. (2019) ‘Parallel molecular evolution and
adaptation in viruses’, Current Opinion in Virology, 34,
pp. 90–96. doi: 10.1016/j.coviro.2018.12.006.
Hall, T. A. (2013) BioEdit v 7.2. 3. Biological Sequence Alignment Editor for
Win 95/98/NT/2K/XP7. Carlsbad, California: Ibis Biosciences.
Iaconelli, M., Bonanno Ferraro, G.,
Mancini, P., Suffredini, E., Veneri, C.,
Ciccaglione, A. R., Bruni, R., Della Libera, S.,
Bignami, F., Brambilla, M., De Medici, D., Brandtner, D.,
Schembri, P., D’Amato, S. and La Rosa, G. (2020) ‘Nine-year
nationwide environmental surveillance of hepatitis E virus in urban
wastewaters in Italy (2011–2019)’, International Journal of
Environmental Research and Public Health, 17(6), p. 2059. doi: 10.3390/ijerph17062059.
Jadhav, A., Zhao, L., Liu, W.,
Ding, C., Nair, V., Ramos-Onsins, S. E. and
Ferretti, L. (2020) ‘Genomic diversity and evolution of quasispecies
in Newcastle disease virus infections’, Viruses, 12(11),
p. 1305. doi: 10.3390/v12111305.
Kenney, S. P. and Meng, X.-J. (2019) ‘Hepatitis E
virus genome structure and replication strategy’, Cold Spring Harbor
Perspectives in Medicine, 9(1), p. a031724. doi: 10.1101/cshperspect.a031724.
Kimura, M. (1991) ‘The neutral theory of
molecular evolution: A review of recent evidence.’, The Japanese
Journal of Genetics, 66(4), pp. 367–386. doi: 10.1266/jjg.66.367.
Kordyum, V. A. (2001) ‘Viruses evolution —
an attempt of non-linear prognosis’, Biopolymers and Cell, 17(6),
pp. 467–486. doi: 10.7124/bc.0005D6.
Lara, J., Purdy, M. A. and
Khudyakov, Y. E. (2014) ‘Genetic host specificity of hepatitis E
virus’, Infection, Genetics and Evolution, 24,
pp. 127–139. doi: 10.1016/j.meegid.2014.03.011.
Lauring, A. S. and Andino, R. (2010) ‘Quasispecies
theory and the behavior of RNA viruses’, PLoS Pathogens, 6(7),
p. e1001005. doi: 10.1371/journal.ppat.1001005.
Lhomme, S., Abravanel, F., Dubois, M.,
Sandres-Saune, K., Rostaing, L., Kamar, N. and Izopet, J.
(2012) ‘Hepatitis E virus quasispecies and the outcome of acute hepatitis E
in solid-organ transplant patients’, Journal of Virology, 86(18),
pp. 10006–10014. doi: 10.1128/JVI.01003-12.
Martin, D.
and Rybicki, E. (2000) ‘RDP: detection of recombination amongst
aligned sequences’, Bioinformatics, 16(6), pp. 562–563.
doi: 10.1093/bioinformatics/16.6.562.
Martin, D. P.,
Posada, D., Crandall, K. A. and Williamson, C. (2005) ‘A
modified bootscan algorithm for automated identification of recombinant
sequences and recombination breakpoints’, AIDS Research and Human
Retroviruses, 21(1), pp. 98–102. doi: 10.1089/aid.2005.21.98.
Martin, D. P.,
Murrell, B., Golden, M., Khoosal, A. and Muhire, B. (2015) ‘RDP4:
Detection and analysis of recombination patterns in virus genomes’, Virus
Evolution, 1(1), p. vev003. doi: 10.1093/ve/vev003.
Mohamed, N. S., Ali Albsheer, M. M.,
Abdelbagi, H., Siddig, E. E., Mohamed, M. A.,
Ahmed, A. E., Omer, R. A., Muneer, M. S.,
Ahmed, A., Osman, H. A., Ali, M. S.,
Eisa, I. M. and Elbasheir, M. M. (2019) ‘Genetic
polymorphism of the N-terminal region in circumsporozoite surface protein of Plasmodium falciparum field isolates
from Sudan’, Malaria Journal, 18(1), p. 333. doi: 10.1186/s12936-019-2970-0.
Muñoz-Chimeno, M., Rodriguez-Paredes, V.,
García-Lugo, M. A. and Avellon, A. (2022) ‘Hepatitis E
genotype 3 genome: A comprehensive analysis of entropy, motif
conservation, relevant mutations, and clade-associated polymorphisms’, Frontiers
in Microbiology, 13, p. 1011662. doi: 10.3389/fmicb.2022.1011662.
Nan, Y., Wu, C., Zhao, Q. and
Zhou, E.-M. (2017) ‘Zoonotic hepatitis E virus: An ignored risk
for public health’, Frontiers in Microbiology, 8, p. 2396.
doi: 10.3389/fmicb.2017.02396.
Niczyporuk, J. S., Kozdrun, W.,
Czekaj, H., Piekarska, K. and Stys-Fijoł, N. (2020) ‘Isolation
and molecular characterization of Fowl adenovirus strains in Black grouse:
First reported case in Poland’, PLoS One, 15(9), p. e0234532.
doi: 10.1371/journal.pone.0234532.
Ohnishi, S., Kang, J., Maekubo, H.,
Arakawa, T., Karino, Y., Toyota, J., Takahashi, K. and Mishiro, S.
(2006) ‘Comparison of clinical features of acute hepatitis caused by hepatitis E
virus (HEV) genotypes 3 and 4 in Sapporo, Japan’, Hepatology
Research, 36(4), pp. 301–307. doi: 10.1016/j.hepres.2006.08.002.
Okamoto, H. (2007) ‘Genetic variability and
evolution of hepatitis E virus’, Virus Research, 127(2),
pp. 216–228. doi: 10.1016/j.virusres.2007.02.002.
Padidam, M., Sawyer, S. and
Fauquet, C. M. (1999) ‘Possible emergence of new geminiviruses
by frequent recombination’, Virology, 265(2),
pp. 218–225. doi: 10.1006/viro.1999.0056.
Pavio, N., Meng, X.-J. and Renou, C.
(2010) ‘Zoonotic hepatitis E: animal reservoirs and emerging risks’,
Veterinary Research, 41(6), p. 46. doi: 10.1051/vetres/2010018.
Perumpail, R. B., Ahmed, A.,
Higgins, J. P., So, S. K., Cochran, J. L.,
Drobeniuc, J., Mixson-Hayden, T. R. and Teo, C.-G. (2015) ‘Fatal
accelerated cirrhosis after imported HEV genotype 4 infection’, Emerging
Infectious Diseases, 21(9), pp. 1679–1681. doi: 10.3201/eid2109.150300.
Reyes, G. R., Purdy, M. A.,
Kim, J., Luk, K.-C., Young, L. M., Fry, K. E. and
Bradley, D. W. (1990) ‘Isolation of a cDNA from the virus
responsible for enterically transmitted non-A, non-B hepatitis’, Science,
247(4948), pp. 1335–1339. doi: 10.1126/science.2107574.
Salines, M., Andraud, M. and Rose, N. (2017)
‘From the epidemiology of hepatitis E virus (HEV) within the swine
reservoir to public health risk mitigation strategies: A comprehensive review’,
Veterinary Research, 48(1), p. 31. doi: 10.1186/s13567-017-0436-3.
Shannon, C. E. (1997) ‘The mathematical
theory of communication. 1963’, M. D. Computing: Computers in Medical
Practice, 14(4), pp. 306–317. PMID: 9230594.
Smith, D. B., Vanek, J.,
Ramalingam, S., Johannessen, I., Templeton, K. and
Simmonds, P. (2012) ‘Evolution of the hepatitis E virus
hypervariable region’, Journal of General Virology, 93(11),
pp. 2408–2418. doi: 10.1099/vir.0.045351-0.
Smith, J.
(1992) ‘Analyzing the mosaic structure of genes’, Journal of
Molecular Evolution, 34(2), pp. 126–129. doi: 10.1007/BF00182389.
Sun, J., Ren, C., Huang, Y.,
Chao, W. and Xie, F. (2020) ‘The effects of synonymous codon
usages on genotypic formation of open reading frames in hepatitis E virus’,
Infection, Genetics and Evolution, 85, p. 104450. doi: 10.1016/j.meegid.2020.104450.
Tajima, F. (1989) ‘Statistical method for
testing the neutral mutation hypothesis by DNA polymorphism’, Genetics,
123(3), pp. 585–595. doi: 10.1093/genetics/123.3.585.
Takahashi, M. and Okamoto, H. (2014) ‘Features
of hepatitis E virus infection in humans and animals in Japan: HEV
infection in Japan’, Hepatology Research, 44(1),
pp. 43–58. doi: 10.1111/hepr.12175.
Tamura, K., Stecher, G., Peterson, D.,
Filipski, A. and Kumar, S. (2013) ‘MEGA6: Molecular
Evolutionary Genetics Analysis Version 6.0’, Molecular Biology
and Evolution, 30(12), pp. 2725–2729. doi: 10.1093/molbev/mst197.
Van Tong, H., Hoan, N. X.,
Wang, B., Wedemeyer, H., Bock, C.-T. and
Velavan, T. P. (2016) ‘Hepatitis E virus mutations:
Functional and clinical relevance’, EBioMedicine, 11,
pp. 31–42. doi: 10.1016/j.ebiom.2016.07.039.
Wang, B. and Meng, X.-J. (2021) ‘Structural
and molecular biology of hepatitis E virus’, Computational and
Structural Biotechnology Journal, 19, pp. 1907–1916. doi: 10.1016/j.csbj.2021.03.038.
Yang, Z. and Bielawski, J. P. (2000) ‘Statistical
methods for detecting molecular adaptation’, Trends in Ecology
& Evolution, 15(12), pp. 496–503. doi: 10.1016/S0169-5347(00)01994-7.
Yin, X., Ying, D., Lhomme, S.,
Tang, Z., Walker, C. M., Xia, N., Zheng, Z. and
Feng, Z. (2018) ‘Origin, antigenicity, and function of a secreted
form of ORF2 in hepatitis E virus infection’, Proceedings of the
National Academy of Sciences, 115(18), pp. 4773–4778. doi: 10.1073/pnas.1721345115.