Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 11, Issue 1, January 2025, Pages 30–38

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

COMPARISON OF THE RECOVERY RATES OF DIFFERENT MORPHOTINCTORIAL GROUPS OF BACTERIA IN PIGSTIES AFTER DISINFECTION WITH ‘VOLCANO MAX’ AND ‘SVITECO PIP MULTI’

Myronchuk V. O., Peleno R. A.

Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, Lviv, Ukraine, e-mail: vitaliy.myronchuk@gmail.com

Download PDF (print version)

Citation for print version: Myronchuk, V. O. and Peleno, R. A. (2025) ‘Comparison of the recovery rates of different morphotinctorial groups of bacteria in pigsties after disinfection with ‘Volcano Max’ and ‘Sviteco PIP Multi’’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(1), pp. 30–38.

Download PDF (online version)

Citation for online version: Myronchuk, V. O. and Peleno, R. A. (2025) ‘Comparison of the recovery rates of different morphotinctorial groups of bacteria in pigsties after disinfection with ‘Volcano Max’ and ‘Sviteco PIP Multi’’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(1), pp. 30–38. DOI: 10.36016/JVMBBS-2025-11-1-5.

Summary. Disinfection is critical to ensure biological safety in animal breeding and rearing farms. It must be of high quality to prevent the spread of infectious diseases. The effectiveness of disinfection measures is usually assessed by the microbial reduction rate, which characterizes the degree of reduction of microbial contamination. However, the microbiome in pig facilities is quite complex and diverse, as a result of which the recovery of its representatives after disinfection can occur at different rates. Therefore, for a more objective assessment of the quality of disinfection and comparison of the effectiveness of disinfectants, it is necessary to consider not only the initial destruction of microorganisms as a result of disinfection, but also the rate of their recovery. The work aimed to compare the effectiveness of ‘Sviteco PIP Multi’ and ‘Volcano Max’ in providing longer protection against the recovery of field isolates of bacteria of different morphotinctorial groups at the facilities for pig housing. During microbiological studies of swabs taken from the floor, walls, plastic partitions between cages, feeders and drinkers of sow, farrowing and piglet rearing facilities 3 h, 6 h, 24 h, 48 h, and 72 h after disinfection and at the end of the relevant production cycles, it was found that when using the classic disinfectant ‘Volcano Max’ at the first stages of the study, the number of swabs containing microorganisms was absent or minimal. Starting from 72 h after its use, the number of positive swabs from all the studied objects reached 100%, regardless of the type of room. When using the experimental ‘Sviteco PIP Multi’, within 3 h after treatment, microbial growth was detected in 100% of the swabs taken from the floor, between cage partitions and feeders, 83.3% from the walls and 62.2% from the drinkers. The explanation for this may be that this disinfectant contains spores of the probiotic bacteria Bacillus subtilis and Bacillus megaterium, which, together with it, get onto the objects to be disinfected, quickly colonize sterile surfaces, get into the swabs and grow on the culture medium. Microscopic analysis of swabs made from cultures that grew from the swabs proved that Gram-positive bacilli were the first to recover after disinfection with ‘Volcano Max’ and ‘Sviteco PIP Multi’. Further, against the background of a decrease in their number, an increase in Gram-negative rod-shaped bacteria and coccal microflora was noted. These changes were less pronounced when using the experimental ‘Sviteco PIP Multi’, which indicates a short-term inhibition of the development of microorganisms by the traditional ‘Volcano Max’. The prolonged disinfectant effect of disinfection of pig housing facilities with ‘Sviteco PIP Multi’ is due to a change in the composition of the microbial community of surfaces due to their rapid colonization by beneficial bacilli belonging to the morphotyntactic group of Gram-positive bacilli and the creation of competition for other microbes. The results obtained indicate different dynamics of microflora repopulation depending on the agent used and the feasibility of further research to assess the effectiveness of probiotic disinfectants in veterinary practice

Keywords: disinfectants, effectiveness, long protection, microflora

References:

Aranke, M., Moheimani, R., Phuphanich, M., Kaye, A. D., Ngo, A. L., Viswanath, O. and Herman, J. (2021) ‘Disinfectants in interventional practices’, Current Pain and Headache Reports, 25(4), p. 21. doi: 10.1007/s11916-021-00938-3.

Artasensi, A., Mazzotta, S. and Fumagalli, L. (2021) ‘Back to basics: Choosing the appropriate surface disinfectant’, Antibiotics, 10(6), p. 613. doi: 10.3390/antibiotics10060613.

Green, L. H. and Goldman, E. (eds.) (2021) Practical Handbook of Microbiology. 4th ed. Boca Raton, FL: CRC Press. doi: 10.1201/9781003099277.

Hong, S.-W., Park, J., Jeong, H. and Kim, M. (2021) ‘Evaluation of the microbiome composition in particulate matter inside and outside of pig houses’, Journal of Animal Science and Technology, 63(3), pp. 640–650. doi: 10.5187/jast.2021.e52.

Komisarova, D., Bondar, A., Lumedze, T. and Lumedze, I. (2023) ‘Disinfection in the livestock building’ [Dezinfektsiia u tvarynnytskomu prymishchenni], Agrarian Bulletin of the Black Sea Littoral [Ahrarnyi visnyk Prychornomoria], 108, pp. 75–78. doi: 10.37000/abbsl.2023.108.10. [in Ukrainian].

Lyasota, V., Bukalova, N., Bogatko, N., Mazur, T., Hitska, O., Dzmil, V., Tkachuk, S. and Prylipko, T. (2022) ‘Hygienic justification of use absorbent Polyphan-K when growing piglets’ [Hihiienichne obgruntuvannia vykorystannia absorbentu Polifan-K za vyroshchuvannia svynei], Scientific Journal of Veterinary Medicine [Naukovyi visnyk veterynarnoi medytsyny], 2, pp. 6–19. doi: 10.33245/2310-4902-2022-176-2-6-19. [in Ukrainian].

Lykhach, V. Ya., Povod, M. H., Shpetnyi, M. B., Nechmilov, V. M., Lykhach, A. V., Mykhalko, O. H., Barkar, Ye. V., Lenkov, L. H. and Kucher, O. O. (2023) Optimization of Technological Solutions for Keeping and Feeding Pigs in Industrial Technology Conditions [Optymizatsiia tekhnolohichnykh rishen utrymannia i hodivli svynei v umovakh promyslovoi tekhnolohii]. Mykolaiv: Ilion. ISBN 9786175346754. Available at: https://dglib.nubip.edu.ua/handle/123456789/10212. [in Ukrainian].

Maillard, J.-Y. and Centeleghe, I. (2023) ‘How biofilm changes our understanding of cleaning and disinfection’, Antimicrobial Resistance & Infection Control, 12(1), p. 95. doi: 10.1186/s13756-023-01290-4.

Makovska, I., Chantziaras, I., Caekebeke, N., Dhaka, P. and Dewulf, J. (2024) ‘Assessment of cleaning and disinfection practices on pig farms across ten European countries’, Animals, 14(4), p. 593. doi: 10.3390/ani14040593.

Saini, T., Vaishnav, S., Chauhan, A., Tiwari, R., Panda, P., Yadav, A. and Das, A. (2025) ‘Chapter 20 — Biosecurity measures for commercial pig farms’, in Chauhan, A., Tarafdar, A., Gaur. G. K., Jadhav, S. T., Tiwari, R. and Dutt, T. (eds.) Commercial Pig Farming: A Guide for Swine Production and Management. San Diego, CA: Academic Press, pp. 343–360. doi: 10.1016/B978-0-443-23769-0.00020-8.

SE ‘UkrNDNC’ (State Enterprise ‘Ukrainian Research and Training Center of Standardization, Certification and Quality Problems’) (2018) DSTU 8020:2015. Animal Rooms. Determination Methods of Disinfection Efficiency [Prymishchennia tvarynnytski. Metody vyznachannia efektyvnosti dezinfektsii]. Kyiv: SE ‘UkrNDNC’. [in Ukrainian].

Shkromada, O. I. and Hrek, R. V. (2022) ‘Study of the microclimate in premises for holding pigs’ [Doslidzhennia mikroklimatu u prymishchenniakh dlia utrymannia svynei], Bulletin of Sumy National Agrarian University. Series: Veterinary Medicine [Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia: Veterynarna medytsyna], 1, pp. 45–50. doi: 10.32845/bsnau.vet.2022.1.7. [in Ukrainian].

Titova, T. V. (2018) ‘Comparison of veterinary-technological descriptions of modern disinfectants’ [Veterynarno-tekhnichni kharakterystyky suchasnykh dezinfektsiinykh zasobiv], Bulletin of the Sumy National Agrarian University. Series ‘Veterinary Medicine’ [Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia ‘Veterynarna medytsyna’], 1, pp. 270–272. Available at: http://nbuv.gov.ua/UJRN/Vsna_vet_2018_1_76. [in Ukrainian].

Yakubchak, O. M., Kovalenko, V. L., Khomenko, V. I., Denysiuk, H. M., Bondar, T. O. and Midyk, S. V. (2005) Recommendations for the Sanitary and Microbiological Examination of Swabs from the Surfaces of Test Objects and Objects of Veterinary Surveillance and Control [Rekomendatsii shchodo sanitarno-mikrobiolohichnoho doslidzhennia zmyviv z poverkhon test-obiektiv ta obiektiv veterynarnoho nahliadu i kontroliu]. Kyiv: National Agrarian University. [in Ukrainian].

Zhumakayeva, A., Tleulessov, R., Bakisheva, Z., Tokayeva, M., Dyussenov, S. and Akzhunussova, I. (2024) ‘Microbial composition of livestock buildings is the basis for the creation of a biological preparation to stabilize the microbial background’, Caspian Journal of Environmental Sciences, 22(2), pp. 381–393. Available at: https://cjes.guilan.ac.ir/article_7347.html.