Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 11, Issue 2, June 2025, Pages 8–13

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

MECHANISMS OF THE TOXIC EFFECTS OF DRACAENA COMPOUNDS ON CATS AND THE CONCEPT OF THERAPEUTIC MEASURES (LITERATURE REVIEW)

Rybachuk Zh. V.

Polissia National University, Zhytomyr, Ukraine, e-mail: zhrybochka@gmail.com

Download PDF (print version)

Citation for print version: RybachukZh. V. (2025) ‘Mechanisms of the toxic effects of Dracaena compounds on cats and the concept of therapeutic measures (literature review)’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(2), pp. 8–13.

Download PDF (online version)

Citation for online version: RybachukZh. V. (2025) ‘Mechanisms of the toxic effects of Dracaena compounds on cats and the concept of therapeutic measures (literature review)’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(2), pp. 8–13. DOI: 10.36016/JVMBBS-2025-11-2-2.

Summary. Due to their external characteristics, ability to reduce bisphenol A, formaldehyde, toluene, and xylene levels in the air, and lack of special growing requirements, Dracaena plants are used for interior landscaping in residential and office spaces. The most common species are D. fragrans, D. surculosa, and D. sanderiana. Dracaena is placed indoors in bright areas where cats rest. The presence of a pleasant, specific odor when the leaves or flowers are damaged, due to the presence of multicomponent essential oils that irritate the senses, promotes the chewing of plant parts by companion animals. Consequently, veterinarians have recently reported an increase in cases of cat poisoning caused by Dracaena species. The study aims to analyze scientific studies of the content of toxic substances in Dracaena and their toxicodynamics in the organism of companion animals. Dhar, Maji and Ghosh (2013), Julsrigival, Julsrigival and Chansakaow (2020) and Ye et al. (2021) report on the spectrum of chemicals found in the flowers of D. fragrans. Julsrigival, Julsrigival and Chansakaow (2020) used solid-phase microextraction followed by gas chromatography-mass spectrometry identification to isolate 30 chemicals from Dracaena flowers overnight. Only eight of these chemicals (benzyl alcohol, phenylethyl alcohol, cinnamaldehyde, 3‑hydroxyl‑4‑4‑phenyl‑2‑2‑butanone, methylene glycol, α‑bergamotene, α‑farnesene, and tetradecanal) were found in amounts greater than 4%. The amount of each substance varied depending on the time of day. The plant synthesized most of the substances from 8 p. m. to 10 a. m. During the day, however, α-farnesene was dominant at 23.1–50.8%. It has a green apple smell, and the LD50 for rats when ingested orally is 1.5 g/kg body weight, and for rabbits when applied dermally is > 5 g/kg body weight. In general, all the substances identified by scientists have a local irritating effect and are low-toxic. In 2010, Calderón et al. reported that D. fragrans contains substances with anticholinesterase activity that excite M‑ and H‑cholinergic receptors in animals. Therefore, the specific antidotes are acetylcholinesterase reagents or a 1% atropine sulfate solution administered subcutaneously. In the scientific articles by Zheng et al. (2004) and Rezgui et al. (2015), it was published that all species of the genus Dracaena contain steroidal saponins. Xu et al. (2010) identified six new representatives of angudrakanosides A‑F in the stems of D. angustifolia. Steroidal saponins are irritating and cause lacrimation, vomiting, and diarrhea. They form insoluble complexes with proteins and binders. Therefore, the goal of antidote therapy for suspected Dracaena poisoning is to reduce irritation caused by essential oils and steroidal saponins, as well as to restore the functional state of M‑ and H‑cholinergic receptors

Keywords: Dracaena fragrans, α‑farnesene, acetylcholesterase inhibitors, steroidal saponins, essential oils

References:

Anufriieva, S. V. (2013) ‘Dracaena’, in Encyclopedia of Garden and Indoor Plants [Entsyklopediia roslyn sadovykh ta kimnatnykh]. Donetsk: Hloriia Treid, p. 16. Available at: https://archive.org/details/en_roslyn. [in Ukrainian].

BDMAEE (2024). Cinnamyl Alcohol. Available at: https://www.bdmaee.net/cinnamyl-alcohol-cinnamyl-alcohol/#dl.

Bos, J. J., Graven, P., Hetterscheid, W. L. A. and Van de Wege, J. J. (1992) ‘Wild and cultivated Dracaena fragrans’, Edinburgh Journal of Botany, 49(3), pp. 311–331. doi: 10.1017/s0960428600000561.

Brühne, F. and Wright, E. (2000) ‘Benzyl Alcohol’, in Ullmann’s Encyclopedia of Industrial Chemistry. 6th ed. Wiley. Vol. 5, pp. 357–365. doi: 10.1002/14356007.a04_001.

Calderón, A. I., Cubilla, M., Espinosa, A. and Gupta, M. P. (2010) ‘Screening of plants of Amaryllidaceae and related families from Panama as sources of acetylcholinesterase inhibitors’, Pharmaceutical Biology, 48(9), pp. 988–993. doi: 10.3109/13880200903418514.

Dhar, T. M., Maji, S. R. and Ghosh, M. (2013) ‘The comparative analysis of essential oils of buds and flowers of Dracaena fragrans’, Science and Culture, 79(1–2), pp. 124–127.

Eugenol (Clove Oil) (2019) LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases. Available at: https://www.ncbi.nlm.nih.gov/books/NBK551727.

Heller, J. L. and Zieve, D. (2010) ‘Eugenol Oil Overdose’, in The New York Times Health Guide. Available at: https://web.archive.org/web/20110725012155/http:/health.nytimes.com/health/guides/poison/eugenol-oil-overdose/overview.html.

Julsrigival, J., Julsrigival, S. and Chansakaow, S. (2020) ‘The diurnal and nocturnal floral scent of Dracaena fragrans (L.) Ker Gawl. in Thailand’, Chiang Mai University Journal of Natural Sciences, 19(1), pp. 52–60. doi: 10.12982/cmujns.2020.0004.

Kamatenesi-Mugisha, M. and Oryem-Origa, H. (2007) ‘Medicinal plants used to induce labour during childbirth in western Uganda’, Journal of Ethnopharmacology, 109(1), pp. 1–9. doi: 10.1016/j.jep.2006.06.011.

Kulkarni, S. G. and Mehendale, H. M. (2005) ‘Benzyl Alcohol’, in Wexler, P. (ed.). Encyclopedia of Toxicology. Elsevier, pp. 262–264. doi: 10.1016/B0-12-369400-0/00121-6.

Lacroix, D., Prado, S., Kamoga, D., Kasenene, J., Namukobe, J., Krief, S., Dumontet, V., Mouray, E., Bodo, B. and Brunois, F. (2011) ‘Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima, Uganda’, Journal of Ethnopharmacology, 133(2), pp. 850–855. doi: 10.1016/j.jep.2010.11.013.

Lu, P. L. and Morden, C. W. (2014) ‘Phylogenetic relationships among dracaenoid genera (Asparagaceae: Nolinoideae) inferred from chloroplast DNA loci’, Systematic Botany, 39(1), pp. 90–104. doi: 10.1600/036364414X678035.

Mabberley, D. J. (2017) Mabberley’s Plant-book: A Portable Dictionary of Plants, their Classification and Uses. 4th ed. Cambridge University Press. doi: 10.1017/9781316335581.

Moshi, M. J., Otieno, D. F. and Weisheit, A. (2012) ‘Ethnomedicine of the Kagera Region, north western Tanzania. Part 3: Plants used in traditional medicine in Kikuku Village, Muleba District’, Journal of Ethnobiology and Ethnomedicine, 8, p. 14. doi: 10.1186/1746-4269-8-14.

NCBI (National Center for Biotechnology Information) (2025). PubChem Compound Summary for CID 3314, Eugenol. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Eugenol.

Nieuwenhuizen, N. J., Wang, M. Y., Matich, A. J., Green, S. A., Chen, X., Yauk, Y. K., Beuning, L. L., Nagegowda, D. A., Dudareva, N. and Atkinson, R. G. (2009) ‘Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)’, Journal of Experimental Botany, 60(11), pp. 3203–3219. doi: 10.1093/jxb/erp162.

Noweck, K. and Grafahrend, W. (2006) ‘Fatty alcohols’, in Ullmann’s Encyclopedia of Industrial Chemistry. 7th ed. Wiley. Vol. 14, pp. 117–141. doi: 10.1002/14356007.a10_277.pub2.

Raina, V. K., Verma, S. C., Dhawan, S., Khan, M., Ramesh, S., Singh, S. C., Yadav, A. and Srivastava, S. K. (2005) ‘Essential oil composition of Murraya exotica from the plains of northern India’, Flavour and Fragrance Journal, 21(1), pp. 140–142. doi: 10.1002/ffj.1547.

Rezgui, A., Mitaine-Offer, A.-C., Miyamoto, T., Tanaka, C. and Lacaille-Dubois, M.-A. (2015) ‘Spirostane-type saponins from Dracaena fragrans “Yellow Coast”’, Natural Product Communications, 10(1), p. 37–38. doi: 10.1177/1934578x1501000111.

Roslynnyi Dim. (2025) Dracaena fragrans. Available at: https://rosdim.com/details?uid=84.

Rybachuk, V. D. (2016) ‘Phenylethyl Alcohol’ [Spyrt feniletylovyi], in Chernykh, V. P. (ed.) Pharmaceutical Encyclopedia [Farmatsevtychna entsyklopediia]. 3rd ed. Available at: https://www.pharmencyclopedia.com.ua/article/610/spirt-feniletilovij.

RybachukZh. V. and Halatiuk, O. Ye. (2022) Biologically Active Substances of Poisonous Plants (Phytotoxicology) [Biolohichno aktyvni rechovyny otruinykh roslyn (fitotoksykolohiia)]. Zhytomyr: Yevro-Volyn. ISBN 9786177992317. [in Ukrainian].

Saiyood, S., Vangnai, A. S., Thiravetyan, P. and Inthorn, D. (2010) ‘Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria’, Journal of Hazardous Materials, 178(1–3), pp. 777–785. doi: 10.1016/j.jhazmat.2010.02.008.

Schlotzhauer, W. S., Pair, S. D. and Horvat, R. J. (1996) ‘Volatile constituents from the flowers of Japanese honeysuckle (Lonicera japonica)’, Journal of Agricultural and Food Chemistry, 44(1), pp. 206–209. doi: 10.1021/jf950275b.

Wolverton, B. C. (1997). How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office. New York: Penguin Books.

Xu, M., Zhang, Y.-J., Li, X.-C., Jacob, M. R. and Yang, C.-R. (2010) ‘Steroidal saponins from fresh stems of Dracaena angustifolia’, Journal of Natural Products, 73(9), pp. 1524–1528. doi: 10.1021/np100351p.

Ye, M., Liu, M., Erb, M., Glauser, G., Zhang, J., Li, X. and Sun, X. (2021) ‘Indole primes defence signalling and increases herbivore resistance in tea plants’, Plant, Cell & Environment, 44(4), pp. 1165–1177. doi: 10.1111/pce.13897.

Zheng, Q.-A., Zhang, Y.-J., Li, H.-Z. and Yang, C.-R. (2004) ‘Steroidal saponins from fresh stem of Dracaena cochinchinensis’, Steroids, 69(2), pp. 111–119. doi: 10.1016/j.steroids.2003.11.004.