Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 11, Issue 2, June 2025, Pages 19–23

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

SUSCEPTIBILITY OF RABBITS, AS HETEROLOGOUS ANIMALS, TO BOVINE LEUKEMIA VIRUS

Gorbatenko S. K. 1, Korneikova O. B. 1, Paliy A. P. 1, Korneikov O. M. 1, Rodchenko L. M. 2

1 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: st.gorbatenko@gmail.com

2 National Military Medical Clinical Center ‘Main Military Clinical Hospital’, Kyiv, Ukraine

Download PDF (print version)

Citation for print version: Gorbatenko, S. K., Korneikova, O. B., Paliy, A. P., Korneikov, O. M. and Rodchenko, L. M. (2025) ‘Susceptibility of rabbits, as heterologous animals, to Bovine leukemia virus’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(2), pp. 19–23.

Download PDF (online version)

Citation for online version: Gorbatenko, S. K., Korneikova, O. B., Paliy, A. P., Korneikov, O. M. and Rodchenko, L. M. (2025) ‘Susceptibility of rabbits, as heterologous animals, to Bovine leukemia virus’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(2), pp. 19–23. DOI: 10.36016/JVMBBS-2025-11-2-4.

Summary. Given the ability of the bovine leukemia virus (BLV) to overcome the interspecies barrier under experimental conditions — leading to the development of an infectious process in pigs, monkeys, rats, capybaras, and other animal species — the study of the susceptibility of various animal species to the pathogen and the determination of their potential role in the epizootic process is relevant and requires further research. Therefore, the investigation of the possible use of laboratory animals, particularly rabbits, for studying the infectious process in leukemia is of scientific interest and may contribute fundamental knowledge about the ability of BLV to cross the species barrier. The possibility of infecting rabbits was studied by subcutaneous inoculation of stabilized blood, followed by assessment of hematological, serological, and molecular-genetic indicators in animals from both the experimental and control groups at distant time points after inoculation. Every 15 days, hematological parameters (ESR, hemoglobin level, and leukocyte differential count) were examined in both groups. Seroconversion in the infected animals was determined using the agar gel immunodiffusion test. At the same time, the presence of the virus’s genetic material was detected by polymerase chain reaction (PCR) using a specific primer pair. Analysis of hematological results from the experimental and control rabbit groups at later stages after infection revealed that 60 days after inoculation, there was an increase in leukocyte count due to a rise in band neutrophils and lymphocytes. Most hematological parameters (hemoglobin, neutrophils, basophils, ESR) in the experimental group returned to baseline levels, except for lymphocyte count. Seroconversion in the experimental group animals was observed starting from day 60 post-infection, with peak levels recorded between days 105–120. The presence of the leukemia virus in the animals during this period was confirmed by molecular-genetic studies, which correlated with the hematological findings, particularly the development of lymphocytosis starting on day 60, which is characteristic of the infectious process typical of BLV infection. Thus, the study experimentally confirmed the ability of the bovine leukemia virus to cross the species barrier and induce an infectious process in heterologous animal species, namely rabbits

Keywords: infectious process, hematology, lymphocytosis, seroconversion, molecular-genetic research

References:

Bai, L., Hirose, T., Assi, W., Wada, S., Takeshima, S. N. and Aida, Y. (2020) ‘Bovine leukemia virus infection affects host gene expression associated with DNA mismatch repair’, Pathogens, 9(11), p. 909. doi: 10.3390/pathogens9110909.

Buehring, G. C., Choi, K. Y. and Jensen, H. M. (2001) ‘Bovine leukemia virus in human breast tissues’, Breast Cancer Research, 3(S1), p. A14. doi: 10.1186/bcr338.

CE (The Council of Europe). (1986) European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. (European Treaty Series, No. 123). Strasbourg: The Council of Europe. Available at: https://conventions.coe.int/treaty/en/treaties/html/123.htm.

CEC (The Council of the European Communities) (2010) ‘Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes’, The Official Journal of the European Communities, L 276, pp. 33–79. Available at: http://data.europa.eu/eli/dir/2010/63/oj.

De Oliveira, C. H. S., Resende, C. F., Oliveira, C. M. C., Barbosa, J. D., Fonseca, A. A. Jr., Leite, R. C. and Reis, J. K. P. (2016) ‘Absence of Bovine leukemia virus (BLV) infection in buffaloes from Amazon and southeast region in Brazil’, Preventive Veterinary Medicine, 129, pp. 9–12. doi: 10.1016/j.prevetmed.2016.05.002.

Dimitrov, P., Simeonov, K., Todorova, K., Ivanova, Z., Toshkova, R., Shikova, E. and Russev, R. (2012) ‘Pathological features of experimental Bovine leukaemia viral (BLV) infection in rats and rabbits’, Bulletin of the Veterinary Institute in Puławy, 56(2), pp. 115–120. doi: 10.2478/v10213-012-0021-5.

Dimitrov, P., Todorova, K., Milcheva, R., Gabev, E. and Russev, R. (2013) ‘BLV infected rats and rabbits as a model of human lymphocytic anemia’, Proceedings of the Fourth Workshop Experimental Models and Methods in Biomedical Research, Sofia, Bulgaria, 27–29 May 2013. Sofia: Institute of Experimental Morphology, Pathology and Anthropology with Museum at the Bulgarian Academy of Sciences, pp. 24–33. Available at: http://www.iempam.bas.bg/journals/models/Models_2013.pdf.

Dudchenko, I. O., Fadieieva, H. A., Kachkovska, V. V. and Orlovskyi, O. V. (2019) Research Methods in Hematology [Metody doslidzhennia v hematolohii]. Sumy: Sumy State University. ISBN 9789666577682. Available at https://essuir.sumdu.edu.ua/bitstream/123456789/74594/1/Prystupa_hematolohiia.pdf.

Fechner, H., Kurg, A., Geue, L., Blankenstein, P., Mewes, G., Ebner, D. and Beier, D. (1996) ‘Evaluation of polymerase chain reaction (PCR) application in diagnosis of Bovine leukaemia virus (BLV) infection in naturally infected cattle’, Journal of Veterinary Medicine, Series B, 43(1-10), pp. 621–630. doi: 10.1111/j.1439-0450.1996.tb00361.x.

Forlani, G., Shallak, M., Accolla, R. S. and Romanelli, M. G. (2021) ‘HTLV-1 infection and pathogenesis: New insights from cellular and animal models’, International Journal of Molecular Sciences, 22(15), p. 8001. doi: 10.3390/ijms22158001.

Graves, D. C. and Ferrer, J. F. (1976) ‘In vitro transmission and propagation of the Bovine leukemia virus in monolayer cell cultures’, Cancer Research, 36(11-1), pp. 4152–4159. Available at: https://aacrjournals.org/cancerres/article-pdf/36/11_Part_1/4152/2860164/cr03611p14152.pdf.

Hossain, M. B., Tan, B. J. Y. and Satou, Y. (2025) ‘Viral oncogenesis of δ-retroviruses, HTLV-1 and BLV, and recent advances in its diagnosis’, Virology, 605, p. 110461. doi: 10.1016/j.virol.2025.110461.

Khatami, A., Pormohammad, A., Farzi, R., Saadati, H., Mehrabi, M., Kiani, S. J. and Ghorbani, S. (2020) ‘Bovine leukemia virus (BLV) and risk of breast cancer: A systematic review and meta-analysis of case-control studies’, Infectious Agents and Cancer, 15, p. 48. doi: 10.1186/s13027-020-00314-7.

Lian, S., Liu, P., Li, X., Lv, G., Song, J., Zhang, H., Wu, R., Wang, D. and Wang, J. (2023) ‘BLV-miR-B1-5p promotes Staphylococcus aureus adhesion to mammary epithelial cells by targeting MUC1’, Animals, 13(24), p. 3811. doi: 10.3390/ani13243811.

Lv, G., Wang, J., Lian, S., Wang, H. and Wu, R. (2024) ‘The global epidemiology of Bovine leukemia virus: Current trends and future implications’, Animals, 14(2), pp. 297. doi: 10.3390/ani14020297.

Marawan, M. A., Alouffi, A., El Tokhy, S., Badawy, S., Shirani, I., Dawood, A., Guo, A., Almutairi, M. M., Alshammari, F. A. and Selim, A. (2021) ‘Bovine leukaemia virus: Current epidemiological circumstance and future prospective’, Viruses, 13(11), p. 2167. doi: 10.3390/v13112167.

Saeedi-Moghaddam, F., Mohammaditabar, M. and Mozhgani, S. H. (2024) ‘Bovine leukemia virus (BLV) and risk of breast cancer; A systematic review and meta-analysis’, Retrovirology, 21(1), pp. 20. doi: 10.1186/s12977-024-00653-y.

Simmonds, R. C. (2017) ‘Chapter 4. Bioethics and animal use in programs of research, teaching, and testing’, in Weichbrod, R. H., Thompson, G. A. and Norton, J. N. (eds.) Management of Animal Care and Use Programs in Research, Education, and Testing. 2nd ed. Boca Raton: CRC Press, pp. 35–62. doi: 10.1201/9781315152189-4.

VRU (Verkhovna Rada Ukrainy) (2006) ‘Law of Ukraine No. 3447-IV of 21.02.2006About protection of animals from cruel treatment’ [Zakon Ukrainy № 3447-IV vid 21.02.2006 ‘Pro zakhyst tvaryn vid zhorstokoho povodzhennia’], News of the Verkhovna Rada of Ukraine [Vidomosti Verkhovnoi Rady Ukrainy], 27, art. 230. Available at: https://zakon.rada.gov.ua/laws/3447-15. [in Ukrainian].

Wittekind, D. H. and Gehring, T. (1985) ‘On the nature of Romanowsky-Giemsa staining and the Romanowsky-Giemsa effect. I. Model experiments on the specificity of Azures B-Eosin Y stain as compared with other thiazine dye-Eosin Y combinations’, The Histochemical Journal, 17(3), pp. 263–289. doi: 10.1007/bf01004591.