Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 11, Issue 3, September 2025, Pages 23–29

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

TRISYMMETRONS AND TUBULAR FORMS OF IRIDOVIRUS FROM THE MOSQUITO AEDES (OCHLEROTATUS) CANTANS (MEIGEN, 1818) (DIPTERA: CULICIDAE)

Buchatskyi L. P. 1, 2

1 D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, e-mail: iridolpb@gmail.com

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Download PDF (print version)

Citation for print version: Buchatskyi, L. P. (2025) ‘Trisymmetrons and tubular forms of iridovirus from the mosquito Aedes (Ochlerotatus) cantans (Meigen, 1818) (Diptera: Culicidae)’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(3), pp. 23–29.

Download PDF (online version)

Citation for online version: Buchatskyi, L. P. (2025) ‘Trisymmetrons and tubular forms of iridovirus from the mosquito Aedes (Ochlerotatus) cantans (Meigen, 1818) (Diptera: Culicidae)’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(3), pp. 23–29. DOI: 10.36016/JVMBBS-2025-11-3-4.

Summary. Mosquito iridescent viruses (MIV) were isolated in Ukraine from the larvae of the bloodsucking mosquito Aedes (Ochlerotatus) cantans (Meigen, 1818) (Diptera: Culicidae) that were infected. Examination of ultrathin sections of infected mosquito fat body cells revealed that MIV virion maturation occurs in the cytoplasm. The virions were spherical with pentagonal and hexagonal outlines, indicating icosahedral symmetry. In addition to spherical virions with a diameter of 190 ± 5 nm, smaller tubular structures were present in the cytoplasm of infected cells. Upon destroying the purified virus, a large number of trisymmetrons were identified. Each trisymmetron consists of 55 hexagonally arranged subunits that form an isosceles triangle with an edge length of 60 nm

Keywords: MIV, IIV‑3, electron microscopy, morphology, mosquito larvae

References:

Arnold, W. (1979) ‘Tubular forms of papova viruses in human laryngeal papilloma’, Archives of Oto-Rhino-Laryngology, 225(1), pp. 15–19. doi: 10.1007/BF00455870.

Bancroft, J. B., Hills, G. J. and Markham, R. (1967) ‘A study of the self-assembly process in a small spherical virus formation of organized structures from protein subunits in vitro’, Virology, 31(2), pp. 354–379. doi: 10.1016/0042-6822(67)90180-8.

Bharat, T. A. M., Castillo Menendez, L. R., Hagen, W. J. H., Lux, V., Igonet, S., Schorb, M., Schur, F. K. M., Kräusslich, H.-G. and Briggs, J. A. G. (2014) ‘Cryo-electron microscopy of tubular arrays of HIV‑1 Gag resolves structures essential for immature virus assembly’, Proceedings of the National Academy of Sciences, 111(22), pp. 8233‒8238, doi: 10.1073/pnas.1401455111.

Buchatskiy, L. P. and Sherban, S. D. (1976) ‘Various biological properties of Aedes cantans irides iridescent virus’ [Nekotorye biologicheskie svoystva virusa raduzhnosti komara Aedes cantans], Problems of Virology [Voprosy virusologii], 4, pp. 432–435. PMID: 1007219. [in Russian].

Buchatskiy, L. P. and Sheremet, V. P. (1974) ‘Detection of iridoviruses in mosquitoes in the Ukraine’ [Obnaruzhenie virusa raduzhnosti komarov na Ukraine], Problems of Virology [Voprosy virusologii], 2, pp. 226–228. PMID: 4446562. [in Russian].

Buchatskyi, L. P., Kaniuka, V. Yu. and Lebedynets, N. N. (1976) ‘Sensitivity of the honeycomb moth to mosquito iridescent virus’ [Chutlyvist velykoi voshchynnoi moli do virusu raiduzhnosti komara], Microbiological Journal [Mikrobiolohichnyi Zhurnal], 38(5), pp. 605–607. PMID: 1012084. [in Ukrainian].

Buchatskyi, L. P., Viktorov-Nabokov, O. V. and Sheremet, V. P. (1976) ‘New hosts of the mosquito iridescent virus in the Ukraine and in Karelia’ [Novi khaziai virusu raiduzhnosti komariv na Ukraini ta v Karelii], Microbiological Journal [Mikrobiolohichnyi Zhurnal], 38(4), pp. 502–505. PMID: 11396. [in Ukrainian].

Caspar, D. L. D. and Klug, A. (1962) ‘Physical principles in the construction of regular viruses’, Cold Spring Harbor Symposia on Quantitative Biology, 27, pp. 1–24. doi: 10.1101/sqb.1962.027.001.005.

Chen, Q., Chen, H., Mao, Q., Liu, Q., Shimizu, T., Uehara-Ichiki, T., Wu, Z., Xie, L., Omura, T. and Wei, T. (2012) ‘Tubular structure induced by a plant virus facilitates viral spread in its vector insect’, PLoS Pathogens, 8(11), p. e1003032. doi: 10.1371/journal.ppat.1003032.

Clark, T. B., Kellen, W. R. and Lum, P. T. M. (1965) ‘A mosquito iridescent virus (MIV) from Aedes taeniorhynchus (Wiedemann)’, Journal of Invertebrate Pathology, 7(4), pp. 519‒521. doi10.1016/0022-2011(65)90133-3.

Eaton, H. E., Ring, B. A. and Brunetti, C. R. (2010) ‘The genomic diversity and phylogenetic relationship in the family Iridoviridae’, Viruses, 2(7), pp. 1458–1475. doi: 10.3390/v2071458.

Epifano, C., Krijnse-Locker, J., Salas, M. L., Salas, J. and Rodríguez, J. M. (2006) ‘Generation of filamentous instead of icosahedral particles by repression of African swine fever virus structural protein pB438L’, Journal of Virology, 80(23), pp. 11456‒11466. doi10.1128/JVI.01468-06.

Ghosh, M. K., Borca, M. V. and Roy, P. (2002) ‘Virus-derived tubular structure displaying foreign sequences on the surface elicit CD4+ Th cell and protective humoral responses’, Virology, 302(2), pp. 383‒392. doi10.1006/viro.2002.1648.

Hitchborn, J. H. and Hills, G. J. (1967) ‘Tubular structures associated with turnip yellow mosaic virus in vivo’, Science, 157(3789), pp. 705‒706. doi10.1126/science.157.3789.705.

Iwasaka, T., Mori, R. and Oda, H. (1980) ‘Tubular structures in mixed infection with herpes simplex virus type 1 and type 2’, Journal of General Virology, 51(1), pp. 189–193. doi: 10.1099/0022-1317-51-1-189.

Keef, T., Taormina, A. and Twarock, R. (2006) ‘Classification of capped tubular viral particles in the family of Papovaviridae’, Journal of Physics: Condensed Matter, 18(14), pp. S375–S387. doi: 10.1088/0953-8984/18/14/S18.

Kimura, T. and Hase, A. (1987) ‘Three different forms of tubular structures associated with the replication of bovine rotavirus in a tissue culture system’, Archives of Virology, 92(1–2), pp. 165‒174. doi: 10.1007/BF01310070.

Kril, V., Hons, M., Amadori, C., Zimberger, C., Couture, L., Bouery, Y., Burlaud-Gaillard, J., Karpov, A., Ptchelkine, D., Thienel, A. L., Kümmerer, B. M., Desfosses, A., Jones, R., Roingeard, P., Meertens, L., Amara, A. and Reguera, J. (2024) ‘Alphavirus nsP3 organizes into tubular scaffolds essential for infection and the cytoplasmic granule architecture’, Nature Communications, 15(1), p. 8106. doi: 10.1038/s41467-024-51952-z.

Manyakov, V. F. (1977) ‘Fine structure of the iridescent virus type I capsid’, Journal of General Virology, 36(1), pp. 73–79. doi: 10.1099/0022-1317-36-1-73.

Neurath, A. R., Trepo, C., Chen, M. and Prince, A. M. (1976) ‘Identification of additional antigenic sites on Dane particles and the tubular forms of hepatitis B surface antigen’, Journal of General Virology, 30(3), pp. 277–285. doi: 10.1099/0022-1317-30-3-277.

Parvez, M. K. (2020) ‘Geometric architecture of viruses’, World Journal of Virology, 9(2), pp. 5‒18 doi: 10.5501/wjv.v9.i2.5.

Stoltz, D. B. (1971) ‘The structure of icosahedral cytoplasmic deoxyriboviruses’, Journal of Ultrastructure Research, 37(1–2), pp. 219–239. doi: 10.1016/S0022-5320(71)80052-7.

Stoltz, D. B. (1973) ‘The structure of icosahedral cytoplasmic deoxyriboviruses: II. An alternative model’, Journal of Ultrastructure Research, 43(1‒2), pp. 58–74. doi: 10.1016/S0022-5320(73)90070-1.

Sutugina, L. P., Filenko, O. V., Lebedynets, N. M. and Buchatskyi, L. P. (1995) ‘Study of mosquito iridovirus replication in cell culture’ [Vyvchennia replikatsii irydovirusu komariv v kulturi klityn], Bulletin of Taras Shevchenko Kyiv National University. Biology [Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Biolohiia], 26, pp. 153‒159. [in Ukrainian].

Weiser, J. (1965) ‘A new virus infection of mosquito larvae’, Bulletin of the World Health Organization, 33(4), pp. 586‒588. PMCID: PMC2475894.

Wrigley, N. G. (1969) ‘An electron microscope study of the structure of Sericesthis iridescent virus’, Journal of General Virology, 5(1), pp. 123–134. doi: 10.1099/0022-1317-5-1-123.

Wrigley, N. G. (1970) ‘An electron microscope study of the structure of Tipula iridescent virus’, Journal of General Virology, 6(1), pp. 169–173. doi10.1099/0022-1317-6-1-169

Xiao, C. and Rossmann, M. G. (2011) ‘Structures of giant icosahedral eukaryotic dsDNA viruses’, Current Opinion in Virology, 1(2), pp. 101–109. doi: 10.1016/j.coviro.2011.06.005.

Yutin, N. and Koonin, E. V. (2012) ‘Hidden evolutionary complexity of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes’, Virology Journal, 9(1), p. 161. doi: 10.1186/1743-422X-9-161.

Zhao, Z., Huang, Y., Liu, C., Zhu, D., Gao, S., Liu, S., Peng, R., Zhang, Y., Huang, X., Qi, J., Wong, C. C. L., Zhang, X., Wang, P., Qin, Q. and Gao, G. F. (2023) ‘Near-atomic architecture of Singapore grouper iridovirus and implications for giant virus assembly’, Nature Communications, 14(1), p. 2050. doi: 10.1038/s41467-023-37681-9.