Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
11, Issue 3, September 2025, Pages 23–29
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
TRISYMMETRONS
AND TUBULAR FORMS OF IRIDOVIRUS FROM THE MOSQUITO AEDES (OCHLEROTATUS)
CANTANS (MEIGEN, 1818) (DIPTERA: CULICIDAE)
Buchatskyi L. P. 1, 2
1 D. K. Zabolotny
Institute of Microbiology and Virology of the National Academy of Sciences of
Ukraine, Kyiv, Ukraine, e-mail: iridolpb@gmail.com
2 Taras Shevchenko
National University of Kyiv, Kyiv, Ukraine
Download
PDF (print version)
Citation for print version: Buchatskyi, L. P.
(2025) ‘Trisymmetrons and
tubular forms of iridovirus from the mosquito Aedes (Ochlerotatus)
cantans (Meigen, 1818) (Diptera: Culicidae)’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 11(3), pp. 23–29.
Download
PDF (online version)
Citation for online version: Buchatskyi, L. P.
(2025) ‘Trisymmetrons and
tubular forms of iridovirus from the mosquito Aedes (Ochlerotatus)
cantans (Meigen, 1818) (Diptera: Culicidae)’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 11(3), pp. 23–29. DOI: 10.36016/JVMBBS-2025-11-3-4.
Summary. Mosquito
iridescent viruses (MIV) were isolated in Ukraine from the larvae of the
bloodsucking mosquito Aedes (Ochlerotatus) cantans
(Meigen, 1818) (Diptera: Culicidae) that were infected. Examination of
ultrathin sections of infected mosquito fat body cells revealed that MIV virion
maturation occurs in the cytoplasm. The virions were spherical with pentagonal
and hexagonal outlines, indicating icosahedral symmetry. In addition to
spherical virions with a diameter of 190 ± 5 nm, smaller
tubular structures were present in the cytoplasm of infected cells. Upon
destroying the purified virus, a large number of trisymmetrons were identified. Each trisymmetron consists of 55 hexagonally
arranged subunits that form an isosceles triangle with an edge length of 60 nm
Keywords: MIV, IIV‑3,
electron microscopy, morphology, mosquito
larvae
References:
Arnold, W. (1979) ‘Tubular forms of
papova viruses in human laryngeal papilloma’, Archives of
Oto-Rhino-Laryngology, 225(1), pp. 15–19. doi: 10.1007/BF00455870.
Bancroft, J. B.,
Hills, G. J. and Markham, R. (1967) ‘A study of the self-assembly
process in a small spherical virus formation of organized structures from
protein subunits in vitro’, Virology,
31(2), pp. 354–379. doi: 10.1016/0042-6822(67)90180-8.
Bharat, T. A. M.,
Castillo Menendez, L. R., Hagen, W. J. H., Lux, V.,
Igonet, S., Schorb, M., Schur, F. K. M.,
Kräusslich, H.-G. and Briggs, J. A. G. (2014)
‘Cryo-electron microscopy of tubular arrays of HIV‑1 Gag resolves
structures essential for immature virus assembly’, Proceedings of the
National Academy of Sciences,
111(22), pp. 8233‒8238, doi: 10.1073/pnas.1401455111.
Buchatskiy, L. P. and
Sherban, S. D. (1976) ‘Various biological properties of Aedes cantans irides iridescent
virus’ [Nekotorye biologicheskie svoystva virusa raduzhnosti komara Aedes cantans], Problems of Virology [Voprosy
virusologii], 4, pp. 432–435. PMID: 1007219. [in Russian].
Buchatskiy, L. P. and
Sheremet, V. P. (1974) ‘Detection of iridoviruses in mosquitoes
in the Ukraine’ [Obnaruzhenie virusa raduzhnosti komarov na Ukraine], Problems
of Virology [Voprosy virusologii],
2, pp. 226–228. PMID: 4446562. [in Russian].
Buchatskyi, L. P.,
Kaniuka, V. Yu. and
Lebedynets, N. N. (1976) ‘Sensitivity of the honeycomb moth to
mosquito iridescent virus’ [Chutlyvist velykoi voshchynnoi moli do virusu
raiduzhnosti komara], Microbiological Journal [Mikrobiolohichnyi Zhurnal],
38(5), pp. 605–607. PMID: 1012084. [in Ukrainian].
Buchatskyi, L. P.,
Viktorov-Nabokov, O. V. and Sheremet, V. P. (1976)
‘New hosts of the mosquito iridescent virus in the Ukraine and in
Karelia’ [Novi khaziai virusu raiduzhnosti komariv na
Ukraini ta v Karelii], Microbiological Journal [Mikrobiolohichnyi Zhurnal],
38(4), pp. 502–505. PMID: 11396. [in
Ukrainian].
Caspar, D. L. D.
and Klug, A. (1962) ‘Physical principles in the construction of
regular viruses’, Cold Spring Harbor Symposia on Quantitative Biology,
27, pp. 1–24. doi: 10.1101/sqb.1962.027.001.005.
Chen, Q.,
Chen, H., Mao, Q., Liu, Q., Shimizu, T., Uehara-Ichiki, T.,
Wu, Z., Xie, L., Omura, T. and Wei, T. (2012)
‘Tubular structure induced by a plant virus facilitates viral spread in
its vector insect’, PLoS Pathogens, 8(11), p. e1003032. doi: 10.1371/journal.ppat.1003032.
Clark, T. B.,
Kellen, W. R. and Lum, P. T. M. (1965) ‘A
mosquito iridescent virus (MIV) from Aedes taeniorhynchus
(Wiedemann)’, Journal of Invertebrate Pathology, 7(4),
pp. 519‒521. doi: 10.1016/0022-2011(65)90133-3.
Eaton, H. E.,
Ring, B. A. and Brunetti, C. R. (2010) ‘The genomic
diversity and phylogenetic relationship in the family Iridoviridae’, Viruses, 2(7), pp. 1458–1475. doi: 10.3390/v2071458.
Epifano, C.,
Krijnse-Locker, J., Salas, M. L., Salas, J. and
Rodríguez, J. M. (2006) ‘Generation of filamentous
instead of icosahedral particles by repression of African swine fever virus
structural protein pB438L’, Journal of Virology, 80(23),
pp. 11456‒11466. doi: 10.1128/JVI.01468-06.
Ghosh, M. K., Borca, M. V.
and Roy, P. (2002) ‘Virus-derived tubular structure displaying
foreign sequences on the surface elicit CD4+ Th cell and protective humoral responses’,
Virology, 302(2), pp. 383‒392. doi: 10.1006/viro.2002.1648.
Hitchborn, J. H.
and Hills, G. J. (1967) ‘Tubular structures associated with
turnip yellow mosaic virus in vivo’,
Science, 157(3789), pp. 705‒706. doi: 10.1126/science.157.3789.705.
Iwasaka, T., Mori, R. and
Oda, H. (1980) ‘Tubular structures in mixed infection with herpes
simplex virus type 1 and type 2’, Journal of General
Virology, 51(1), pp. 189–193. doi:
10.1099/0022-1317-51-1-189.
Keef, T., Taormina, A. and
Twarock, R. (2006) ‘Classification of capped tubular viral particles
in the family of Papovaviridae’, Journal of Physics: Condensed Matter,
18(14), pp. S375–S387. doi: 10.1088/0953-8984/18/14/S18.
Kimura, T. and Hase, A. (1987)
‘Three different forms of tubular structures associated with the
replication of bovine rotavirus in a tissue culture system’, Archives
of Virology, 92(1–2), pp. 165‒174. doi:
10.1007/BF01310070.
Kril, V., Hons, M., Amadori, C.,
Zimberger, C., Couture, L., Bouery, Y.,
Burlaud-Gaillard, J., Karpov, A., Ptchelkine, D., Thienel, A. L.,
Kümmerer, B. M., Desfosses, A., Jones, R.,
Roingeard, P., Meertens, L., Amara, A. and Reguera, J.
(2024) ‘Alphavirus nsP3 organizes into tubular scaffolds essential for
infection and the cytoplasmic granule architecture’, Nature
Communications, 15(1), p. 8106. doi: 10.1038/s41467-024-51952-z.
Manyakov, V. F. (1977) ‘Fine
structure of the iridescent virus type I capsid’, Journal of
General Virology, 36(1), pp. 73–79. doi:
10.1099/0022-1317-36-1-73.
Neurath, A. R.,
Trepo, C., Chen, M. and Prince, A. M. (1976)
‘Identification of additional antigenic sites on Dane particles and the
tubular forms of hepatitis B surface antigen’, Journal of General
Virology, 30(3), pp. 277–285. doi: 10.1099/0022-1317-30-3-277.
Parvez, M. K. (2020)
‘Geometric architecture of viruses’, World Journal of Virology,
9(2), pp. 5‒18 doi: 10.5501/wjv.v9.i2.5.
Stoltz, D. B.
(1971) ‘The structure of icosahedral cytoplasmic deoxyriboviruses’,
Journal of Ultrastructure Research, 37(1–2),
pp. 219–239. doi: 10.1016/S0022-5320(71)80052-7.
Stoltz, D. B. (1973) ‘The structure of icosahedral cytoplasmic deoxyriboviruses: II.
An alternative model’, Journal of Ultrastructure Research,
43(1‒2),
pp. 58–74. doi: 10.1016/S0022-5320(73)90070-1.
Sutugina, L. P.,
Filenko, O. V., Lebedynets, N. M. and Buchatskyi, L. P.
(1995) ‘Study of mosquito iridovirus replication in cell culture’
[Vyvchennia replikatsii irydovirusu komariv v kulturi klityn], Bulletin of
Taras Shevchenko Kyiv National University. Biology [Visnyk
Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Biolohiia], 26,
pp. 153‒159. [in
Ukrainian].
Weiser, J.
(1965) ‘A new virus infection of mosquito larvae’, Bulletin of
the World Health Organization, 33(4), pp. 586‒588. PMCID: PMC2475894.
Wrigley, N. G. (1969) ‘An
electron microscope study of the structure of Sericesthis iridescent virus’, Journal of General Virology,
5(1), pp. 123–134. doi: 10.1099/0022-1317-5-1-123.
Wrigley, N. G. (1970) ‘An
electron microscope study of the structure of Tipula iridescent virus’, Journal of General Virology,
6(1), pp. 169–173. doi: 10.1099/0022-1317-6-1-169
Xiao, C. and Rossmann, M. G.
(2011) ‘Structures of giant icosahedral eukaryotic dsDNA viruses’, Current
Opinion in Virology, 1(2), pp. 101–109. doi:
10.1016/j.coviro.2011.06.005.
Yutin, N. and Koonin, E. V.
(2012) ‘Hidden evolutionary complexity of Nucleo-Cytoplasmic Large DNA
viruses of eukaryotes’, Virology Journal, 9(1), p. 161. doi: 10.1186/1743-422X-9-161.
Zhao, Z., Huang, Y., Liu, C.,
Zhu, D., Gao, S., Liu, S., Peng, R., Zhang, Y.,
Huang, X., Qi, J., Wong, C. C. L., Zhang, X.,
Wang, P., Qin, Q. and Gao, G. F. (2023) ‘Near-atomic
architecture of Singapore grouper iridovirus and implications for giant virus
assembly’, Nature Communications, 14(1), p. 2050. doi: 10.1038/s41467-023-37681-9.
