Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
11, Issue 3, September 2025, Pages 37–41
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
INNOVATIVE
METHODS OF DISINFECTING LIVESTOCK FACILITIES
Paliy A. P. 1,
Sumakova N. V. 1, Keleberda M. I. 1,
Yemelianov A. V. 1, Pavlichenko O. V. 2
1 National
Scientific Center ‘Institute of Experimental and Clinical Veterinary
Medicine’, Kharkiv, Ukraine, e-mail: paliy.dok@gmail.com
2 State
Biotechnological University, Kharkiv, Ukraine
Download
PDF (print version)
Citation for print version: Paliy, A. P.,
Sumakova, N. V., Keleberda, M. I., Yemelianov, A. V.
and Pavlichenko, O. V. (2025) ‘Innovative methods of disinfecting livestock facilities’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 11(3), pp. 37–41.
Download
PDF (online version)
Citation for online version: Paliy, A. P.,
Sumakova, N. V., Keleberda, M. I., Yemelianov, A. V.
and Pavlichenko, O. V. (2025) ‘Innovative methods of disinfecting livestock facilities’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 11(3), pp. 37–41. DOI: 10.36016/JVMBBS-2025-11-3-6.
Summary. Parasitic diseases in
animals are widespread throughout the world and cause significant economic
losses to the livestock industry. The most effective and economically justified
measure for preventing these diseases among susceptible livestock is to
implement high-quality veterinary and sanitary measures. To achieve this, it is
essential to use effective disinfectants that have been proven to work in both
laboratory and production environments. The work was carried out at the
Laboratory of Veterinary Sanitation, Parasitology and Bee Diseases Study in the
National Scientific Center ‘Institute of Experimental and Clinical
Veterinary Medicine’ (Kharkiv, Ukraine). The effectiveness of the
disinfectants was determined in accordance with existing regulatory documents.
Based on these results, a method for disinfecting livestock facilities was
developed. This method involves using a preparation containing peroxyacetic
acid, hydrogen peroxide, acetic acid, stabilizing additives, and water. The
exposure time ranges from 6 to 48 h, and the consumption rate is
500 ml/m². We propose a disinfection method involving a disinfectant
containing potassium monopersulfate, sodium dichloroisocyanurate, sodium
hexametaphosphate, sulfamic acid, malic acid, sodium alkylbenzyl sulfonate,
sodium sulfate, and water. The exposure time is 3 h, and the consumption
rate is 300 ml/m². Another method involves a preparation containing a
mixture of quaternary ammonium compounds, glutaraldehyde, isopropyl alcohol,
nonionic surfactants, and deionized water. This method requires an exposure
time of 3–24 h and a consumption rate of 500 ml/m². The
disinfectant, containing didecyldimethylammonium chloride, glutaraldehyde,
benzalkonium chloride, surfactants, orthophosphoric acid, and water, has been
proven effective at a 72‑hour exposure rate of 500 ml/m² for
soil disinfection. The proposed disinfection methods have been proven to meet
biosafety and bioprotection requirements, and are easy to use, environmentally
friendly, highly effective, and cost-effective. The results presented in this
article significantly supplement existing sanitary and hygienic protocols in
animal husbandry. Further research should focus on developing a comprehensive,
scientifically based, integrated system for protecting farm animals
Keywords: disinfectant,
concentration, exposure, soil, disinfection, effectiveness, helminth eggs
References:
Amoah, I. D.,
Adegoke, A. A. and Stenström, T. A. (2018)
‘Soil-transmitted helminth infections associated with wastewater and
sludge reuse: A review of current evidence’, Tropical Medicine & International Health, 23(7),
pp. 692‒703. doi: 10.1111/tmi.13076.
Bogach, M. V., Paliy, A. P.,
Perotsʼka, L. V., Pyvovarova, І. V., Stoyanova, V. Y.
and Palii, A. P. (2020) ‘The influence of hydro-meteorological
conditions on the spread of Chicken cestodiasis’, Regulatory Mechanisms in Biosystems, 11(3), pp. 414‒418.
doi: 10.15421/022063.
Castro-Seriche, S.,
Fernández, Í. and Landaeta-Aqueveque, C. (2020)
‘Factors associated with the presence of helminth eggs in the soil of
public areas in Concepción, Chile’, Revista Brasileira de Parasitologia Veterinária, 29(3),
p. e003120. doi: 10.1590/S1984-29612020054.
De Rezende, H. C.,
De Lima, M. and Santos, L. D. (2023) ‘Peracetic acid
application as an antimicrobial and its residual (HEDP): A holistic approach on
the technological characteristics of chicken meat’, Poultry Science, 102(10), p. 103003. doi: 10.1016/j.psj.2023.103003.
Elghryani, N., McOwan, T., Mincher, C.,
Duggan, V. and de Waal, T. (2023) ‘Estimating the
prevalence and factors affecting the shedding of helminth eggs in Irish equine
populations’, Animals, 13(4),
p. 581. 10.3390/ani13040581.
Grego, S., Barani, V.,
Hegarty-Craver, M., Raj, A., Perumal, P., Berg, A. B.
and Archer, C. (2018) ‘Soil-transmitted helminth eggs assessment in
wastewater in an urban area in India’, Journal of Water and Health, 16(1), pp. 34‒43. doi: 10.2166/wh.2017.147.
Gurmassa, B. K.,
Gari, S. R., Solomon, E. T., Goodson, M. L., Walsh, C. L.,
Dessie, B. K. and Alemu, B. M. (2023) ‘Distribution of
helminth eggs in environmental and stool samples of farming households along
Akaki River in Addis Ababa, Ethiopia’, Tropical Medicine and Health, 51(1), р. 67. doi: 10.1186/s41182-023-00558-0.
Ibáñez-Cervantes, G.,
Cruz-Bautista, J. D., Vargas-De-León, C.,
Rojas-Bernabé, A., Ramírez-Cortina, C. R. and
Nogueda-Torres, B. (2024) ‘Ozone and peroxone disinfection of Toxocara canis eggs in water’, Tropical Biomedicine, 41(1),
pp. 45‒51. doi: 10.47665/tb.41.1.006.
Khorolskyi, A. (2022) ‘Ovocidal
action of disinfectants against eggs of Passalurus
ambiguus’, Ukrainian Journal
of Veterinary and Agricultural Sciences, 5(1), pp. 53‒57. doi: 10.32718/ujvas5-1.09.
Kwong, L. H., Sen, D.,
Islam, S., Shahriar, S., Benjamin-Chung, J.,
Arnold, B. F., Hubbard, A., Parvez, S. M.,
Islam, M., Unicomb, L., Rahman, M. M., Nelson, K.,
Colford, J. M. Jr., Luby, S. P. and
Ercumen, A. (2021) ‘Effect of sanitation improvements on
soil-transmitted helminth eggs in courtyard soil from rural Bangladesh:
Evidence from a cluster-randomized controlled trial’, PLoS Neglected Tropical Diseases, 15(7),
p. e0008815. doi: 10.1371/journal.pntd.0008815.
Labana, R. V.,
Dimasin, R. V. D., Tychuaco, J. S.,
Reboa, A. J. C. and Coronado, A. S. (2024)
‘Copromicroscopic diagnosis and prevalence of parasitic infections in
animals in Sitio Ibayo, San Mateo, Rizal, Philippines: Establishing a sentinel
study for zoonotic disease surveillance’, Cureus, 16(12), p. e75675. doi: 10.7759/cureus.75675.
Oh, K. S., Kim, G. T.,
Ahn, K. S. and Shin, S. S. (2016) ‘Effects of
disinfectants on larval development of Ascaris
suum eggs’, The Korean Journal
of Parasitology, 54(1), pp. 103‒107. doi: 10.3347/kjp.2016.54.1.103.
Orta De Velásquez, M. T.,
Yáñez-Noguez, I., Jiménez-Cisneros, B. and Luna
Pabello, V. M. (2008) ‘Adding silver and copper to hydrogen
peroxide and peracetic acid in the disinfection of an advanced primary
treatment effluent’, Environmental
Technology, 29(11), pp. 1209‒1217. doi: 10.1080/09593330802270632.
Paliy, A. P. (2018)
‘Differential sensitivity of mycobacterium to chlorine
disinfectants’ [Dyferentsiina chutlyvist mikobakterii do khlornykh
dezinfektantiv], Microbiological Journal
[Mikrobiolohichnyi Zhurnal], 80(2), pp. 104‒116. doi: 10.15407/microbiolj80.02.104.
[in Ukrainian].
Paliy, A. P.,
Sumakova, N. V., Mashkey, A. M., Petrov, R. V.,
Paliy, A. P. and Ishchenko, K. V. (2018a)
‘Contamination of animal-keeping premises with eggs of parasitic
worms’, Biosystems Diversity,
26(4), pp. 327‒333. doi: 10.15421/011848.
Paliy, A. P.,
Sumakova, N. V., Mashkey, A. M., Stegniy, B. T., Gujvinska, S. O.
and Rodionova, K. O. (2018b) Method of Disinfection of
Surfaces Contaminated with Ascaris Suum Eggs [Sposib dezinvazii poverkhon,
kontaminovanykh yaitsiamy Ascaris suum]. Patent no. UA 130430. Available at: https://sis.nipo.gov.ua/uk/search/detail/396185. [in Ukrainian].
Paliy, A. P.,
Sumakova, N. V., Stegniy, B. T., Mashkey, A. M., Hontar, V. V.,
Palii, A. P. and Synytsa, O. V. (2019) Method of Disinfection of Soil Contaminated with Toxocara Canis Eggs [Sposib
dezinvazii gruntu, kontaminovanoho yaitsiamy Toxocara canis]. Patent no. UA 137488. Available at: https://sis.nipo.gov.ua/uk/search/detail/1387730. [in Ukrainian].
Paliy, A. P.,
Sumakova, N. V., Stegniy, B. T., Mashkey, A. M.,
Hontar, V. V. and Palii, A. P. (2020a) Method of Disinfection of Livestock Objects [Sposib dezinvazii obiektiv
tvarynnytstva]. Patent no. UA 144297. Available at: https://sis.nipo.gov.ua/uk/search/detail/1456017. [in Ukrainian].
Paliy, A. P.,
Zavgorodnii, A. I., Stegniy, B. T. and
Palii, A. P. (2020b) Scientific
and Methodological Grounds for Controlling the Development and Use of
Disinfectants’, Monograph
[Naukovo-metodychni osnovy kontroliu rozrobky ta zastosuvannia zasobiv dezinfektsii].
Kharkiv: Miskdruk. doi: 10.36016/VB-2020-1.
[in Ukrainian].
Paliy, A. P.,
Sumakova, N. V., Pavlichenko, O. V., Borovkov, S. B. and
Bohach, O. M. (2024a) Method of
Disinfection of Veterinary Control Objects [Sposib dezinvazii obiektiv
veterynarnoho kontroliu]. Patent no. UA 156093. Available at: https://sis.nipo.gov.ua/uk/search/detail/1798431. [in Ukrainian].
Paliy, A., Zavgorodnii, A.,
Rodionova, K., Borovkov, S., Pavlichenko, O., Dubin, R. and
Ihnatieva, T. (2024b) ‘Resistance of different types of
nontuberculos mycobacteria to aldehyde disinfectants’, Veterinarski Arhiv, 94(6),
pp. 499‒512. Available in https://hrcak.srce.hr/file/465547.
Paller, V. G. V. and
Babia-Abion, S. (2019) ‘Soil-transmitted helminth (STH) eggs
contaminating soils in selected organic and conventional farms in the
Philippines’, Parasite Epidemiology
and Control, 7, p. e00119. doi: 10.1016/j.parepi.2019.e00119.
Ponomarenko, G. V.,
Kovalenko, V. L., Balatskiy, Y. O.,
Ponomarenko, O. V., Paliy, A. P. and
Shulyak, S. V. (2021) ‘Bactericidal efficiency of preparation
based on essential oils used in aerosol disinfection in the presence of
poultry’, Regulatory Mechanisms in
Biosystems, 12(4), pp. 635‒641. doi: 10.15421/022187.
Ren, Z., Han, J., Zhang, X.,
Yan, Z. and Wei, Q. (2024) ‘Effective of different industrial
disinfection in subzero cold-chain environment’, Scientific Reports, 14(1), p. 12651. doi: 10.1038/s41598-024-62204-x.
Rolbiecki, L. and
Izdebska, J. N. (2024) ‘Modern strategies for diagnosis and
treatment of parasitic diseases’, International
Journal of Molecular Sciences, 25(12), p. 6373. doi: 10.3390/ijms25126373.
Sonthipet, S., Ruenphet, S. and
Takehara, K. (2018) ‘Bactericidal and virucidal efficacies of
potassium monopersulfate and its application for inactivating Avian influenza
virus on virus-spiked clothes’, Journal
of Veterinary Medical Science, 80(4), pp. 568‒573. doi: 10.1292/jvms.17-0599.
Steinbaum, L., Njenga, S. M.,
Kihara, J., Boehm, A. B., Davis, J., Null, C. and
Pickering, A. J. (2016) ‘Soil-transmitted helminth eggs are
present in soil at multiple locations within households in Rural Kenya’, PLoS One, 11(6), p. e0157780. doi: 10.1371/journal.pone.0157780.
Tadege, B., Mekonnen, Z.,
Dana, D., Sharew, B., Dereje, E., Loha, E.,
Verweij, J. J., Casaert, S., Vlaminck, J., Ayana, M.
and Levecke, B. (2022) ‘Assessment of environmental contamination
with soil-transmitted helminths life stages at school compounds, households and
open markets in Jimma Town, Ethiopia’, PLoS Neglected Tropical Diseases, 16(4), p. e0010307. doi: 10.1371/journal.pntd.0010307.
Tyski, S., Bocian, E. and
Laudy, A. E. (2024) ‘Animal health protection —
Assessing antimicrobial activity of veterinary disinfectants and antiseptics
and their compliance with European standards: A narrative review’, Polish Journal of Microbiology, 73(4),
pp. 413‒431. doi: 10.33073/pjm-2024-043.
Umemura, T., Mutoh, Y.,
Maeda, M., Hagihara, M., Ohta, A., Mizuno, T.,
Kato, H., Sukawa, M., Yamada, T., Ikeda, Y.,
Mikamo, H. and Ichihara, T. (2022) ‘Impact of hospital
environmental cleaning with a potassium peroxymonosulphate-based environmental
disinfectant and antimicrobial stewardship on the reduction of hospital-onset Clostridioides difficile
infections’, Journal of Hospital
Infection, 129, pp. 181‒188. doi: 10.1016/j.jhin.2022.06.018.
Zhang, Y., Chen, G., Zhou, S.,
He, L., Ayanniyi, O. O., Xu, Q., Yue, Z. and
Yang, C. (2024) ‘APDDD: Animal parasitic diseases and drugs
database’, Comparative Immunology,
Microbiology and Infectious Diseases, 104, p. 102096. doi: 10.1016/j.cimid.2023.102096.
