Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 11, Issue 3, September 2025, Pages 37–41

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

INNOVATIVE METHODS OF DISINFECTING LIVESTOCK FACILITIES

Paliy A. P. 1, Sumakova N. V. 1, Keleberda M. I. 1, Yemelianov A. V. 1, Pavlichenko O. V. 2

1 National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’, Kharkiv, Ukraine, e-mail: paliy.dok@gmail.com

2 State Biotechnological University, Kharkiv, Ukraine

Download PDF (print version)

Citation for print version: Paliy, A. P., Sumakova, N. V., Keleberda, M. I., Yemelianov, A. V. and Pavlichenko, O. V. (2025) ‘Innovative methods of disinfecting livestock facilities’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(3), pp. 37–41.

Download PDF (online version)

Citation for online version: Paliy, A. P., Sumakova, N. V., Keleberda, M. I., Yemelianov, A. V. and Pavlichenko, O. V. (2025) ‘Innovative methods of disinfecting livestock facilities’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(3), pp. 37–41. DOI: 10.36016/JVMBBS-2025-11-3-6.

Summary. Parasitic diseases in animals are widespread throughout the world and cause significant economic losses to the livestock industry. The most effective and economically justified measure for preventing these diseases among susceptible livestock is to implement high-quality veterinary and sanitary measures. To achieve this, it is essential to use effective disinfectants that have been proven to work in both laboratory and production environments. The work was carried out at the Laboratory of Veterinary Sanitation, Parasitology and Bee Diseases Study in the National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’ (Kharkiv, Ukraine). The effectiveness of the disinfectants was determined in accordance with existing regulatory documents. Based on these results, a method for disinfecting livestock facilities was developed. This method involves using a preparation containing peroxyacetic acid, hydrogen peroxide, acetic acid, stabilizing additives, and water. The exposure time ranges from 6 to 48 h, and the consumption rate is 500 ml/m². We propose a disinfection method involving a disinfectant containing potassium monopersulfate, sodium dichloroisocyanurate, sodium hexametaphosphate, sulfamic acid, malic acid, sodium alkylbenzyl sulfonate, sodium sulfate, and water. The exposure time is 3 h, and the consumption rate is 300 ml/m². Another method involves a preparation containing a mixture of quaternary ammonium compounds, glutaraldehyde, isopropyl alcohol, nonionic surfactants, and deionized water. This method requires an exposure time of 3–24 h and a consumption rate of 500 ml/m². The disinfectant, containing didecyldimethylammonium chloride, glutaraldehyde, benzalkonium chloride, surfactants, orthophosphoric acid, and water, has been proven effective at a 72‑hour exposure rate of 500 ml/m² for soil disinfection. The proposed disinfection methods have been proven to meet biosafety and bioprotection requirements, and are easy to use, environmentally friendly, highly effective, and cost-effective. The results presented in this article significantly supplement existing sanitary and hygienic protocols in animal husbandry. Further research should focus on developing a comprehensive, scientifically based, integrated system for protecting farm animals

Keywords: disinfectant, concentration, exposure, soil, disinfection, effectiveness, helminth eggs

References:

Amoah, I. D., Adegoke, A. A. and Stenström, T. A. (2018) ‘Soil-transmitted helminth infections associated with wastewater and sludge reuse: A review of current evidence’, Tropical Medicine & International Health, 23(7), pp. 692‒703. doi: 10.1111/tmi.13076.

Bogach, M. V., Paliy, A. P., Perotsʼka, L. V., Pyvovarova, І. V., Stoyanova, V. Y. and Palii, A. P. (2020) ‘The influence of hydro-meteorological conditions on the spread of Chicken cestodiasis’, Regulatory Mechanisms in Biosystems, 11(3), pp. 414‒418. doi: 10.15421/022063.

Castro-Seriche, S., Fernández, Í. and Landaeta-Aqueveque, C. (2020) ‘Factors associated with the presence of helminth eggs in the soil of public areas in Concepción, Chile’, Revista Brasileira de Parasitologia Veterinária, 29(3), p. e003120. doi: 10.1590/S1984-29612020054.

De Rezende, H. C., De Lima, M. and Santos, L. D. (2023) ‘Peracetic acid application as an antimicrobial and its residual (HEDP): A holistic approach on the technological characteristics of chicken meat’, Poultry Science, 102(10), p. 103003. doi: 10.1016/j.psj.2023.103003.

Elghryani, N., McOwan, T., Mincher, C., Duggan, V. and de Waal, T. (2023) ‘Estimating the prevalence and factors affecting the shedding of helminth eggs in Irish equine populations’, Animals, 13(4), p. 581. 10.3390/ani13040581.

Grego, S., Barani, V., Hegarty-Craver, M., Raj, A., Perumal, P., Berg, A. B. and Archer, C. (2018) ‘Soil-transmitted helminth eggs assessment in wastewater in an urban area in India’, Journal of Water and Health, 16(1), pp. 34‒43. doi: 10.2166/wh.2017.147.

Gurmassa, B. K., Gari, S. R., Solomon, E. T., Goodson, M. L., Walsh, C. L., Dessie, B. K. and Alemu, B. M. (2023) ‘Distribution of helminth eggs in environmental and stool samples of farming households along Akaki River in Addis Ababa, Ethiopia’, Tropical Medicine and Health, 51(1), р. 67. doi: 10.1186/s41182-023-00558-0.

Ibáñez-Cervantes, G., Cruz-Bautista, J. D., Vargas-De-León, C., Rojas-Bernabé, A., Ramírez-Cortina, C. R. and Nogueda-Torres, B. (2024) ‘Ozone and peroxone disinfection of Toxocara canis eggs in water’, Tropical Biomedicine, 41(1), pp. 45‒51. doi: 10.47665/tb.41.1.006.

Khorolskyi, A. (2022) ‘Ovocidal action of disinfectants against eggs of Passalurus ambiguus’, Ukrainian Journal of Veterinary and Agricultural Sciences, 5(1), pp. 53‒57. doi: 10.32718/ujvas5-1.09.

Kwong, L. H., Sen, D., Islam, S., Shahriar, S., Benjamin-Chung, J., Arnold, B. F., Hubbard, A., Parvez, S. M., Islam, M., Unicomb, L., Rahman, M. M., Nelson, K., Colford, J. M. Jr., Luby, S. P. and Ercumen, A. (2021) ‘Effect of sanitation improvements on soil-transmitted helminth eggs in courtyard soil from rural Bangladesh: Evidence from a cluster-randomized controlled trial’, PLoS Neglected Tropical Diseases, 15(7), p. e0008815. doi: 10.1371/journal.pntd.0008815.

Labana, R. V., Dimasin, R. V. D., Tychuaco, J. S., Reboa, A. J. C. and Coronado, A. S. (2024) ‘Copromicroscopic diagnosis and prevalence of parasitic infections in animals in Sitio Ibayo, San Mateo, Rizal, Philippines: Establishing a sentinel study for zoonotic disease surveillance’, Cureus, 16(12), p. e75675. doi: 10.7759/cureus.75675.

Oh, K. S., Kim, G. T., Ahn, K. S. and Shin, S. S. (2016) ‘Effects of disinfectants on larval development of Ascaris suum eggs’, The Korean Journal of Parasitology, 54(1), pp. 103‒107. doi: 10.3347/kjp.2016.54.1.103.

Orta De Velásquez, M. T., Yáñez-Noguez, I., Jiménez-Cisneros, B. and Luna Pabello, V. M. (2008) ‘Adding silver and copper to hydrogen peroxide and peracetic acid in the disinfection of an advanced primary treatment effluent’, Environmental Technology, 29(11), pp. 1209‒1217. doi: 10.1080/09593330802270632.

Paliy, A. P. (2018) ‘Differential sensitivity of mycobacterium to chlorine disinfectants’ [Dyferentsiina chutlyvist mikobakterii do khlornykh dezinfektantiv], Microbiological Journal [Mikrobiolohichnyi Zhurnal], 80(2), pp. 104‒116. doi: 10.15407/microbiolj80.02.104. [in Ukrainian].

Paliy, A. P., Sumakova, N. V., Mashkey, A. M., Petrov, R. V., Paliy, A. P. and Ishchenko, K. V. (2018a) ‘Contamination of animal-keeping premises with eggs of parasitic worms’, Biosystems Diversity, 26(4), pp. 327‒333. doi: 10.15421/011848.

Paliy, A. P., Sumakova, N. V., Mashkey, A. M., Stegniy, B. T., Gujvinska, S. O. and Rodionova, K. O. (2018b) Method of Disinfection of Surfaces Contaminated with Ascaris Suum Eggs [Sposib dezinvazii poverkhon, kontaminovanykh yaitsiamy Ascaris suum]. Patent no. UA 130430. Available at: https://sis.nipo.gov.ua/uk/search/detail/396185. [in Ukrainian].

Paliy, A. P., Sumakova, N. V., Stegniy, B. T., Mashkey, A. M., Hontar, V. V., Palii, A. P. and Synytsa, O. V. (2019) Method of Disinfection of Soil Contaminated with Toxocara Canis Eggs [Sposib dezinvazii gruntu, kontaminovanoho yaitsiamy Toxocara canis]. Patent no. UA 137488. Available at: https://sis.nipo.gov.ua/uk/search/detail/1387730. [in Ukrainian].

Paliy, A. P., Sumakova, N. V., Stegniy, B. T., Mashkey, A. M., Hontar, V. V. and Palii, A. P. (2020a) Method of Disinfection of Livestock Objects [Sposib dezinvazii obiektiv tvarynnytstva]. Patent no. UA 144297. Available at: https://sis.nipo.gov.ua/uk/search/detail/1456017. [in Ukrainian].

Paliy, A. P., Zavgorodnii, A. I., Stegniy, B. T. and Palii, A. P. (2020b) Scientific and Methodological Grounds for Controlling the Development and Use of Disinfectants’, Monograph [Naukovo-metodychni osnovy kontroliu rozrobky ta zastosuvannia zasobiv dezinfektsii]. Kharkiv: Miskdruk. doi: 10.36016/VB-2020-1. [in Ukrainian].

Paliy, A. P., Sumakova, N. V., Pavlichenko, O. V., Borovkov, S. B. and Bohach, O. M. (2024a) Method of Disinfection of Veterinary Control Objects [Sposib dezinvazii obiektiv veterynarnoho kontroliu]. Patent no. UA 156093. Available at: https://sis.nipo.gov.ua/uk/search/detail/1798431. [in Ukrainian].

Paliy, A., Zavgorodnii, A., Rodionova, K., Borovkov, S., Pavlichenko, O., Dubin, R. and Ihnatieva, T. (2024b) ‘Resistance of different types of nontuberculos mycobacteria to aldehyde disinfectants’, Veterinarski Arhiv, 94(6), pp. 499‒512. Available in https://hrcak.srce.hr/file/465547.

Paller, V. G. V. and Babia-Abion, S. (2019) ‘Soil-transmitted helminth (STH) eggs contaminating soils in selected organic and conventional farms in the Philippines’, Parasite Epidemiology and Control, 7, p. e00119. doi: 10.1016/j.parepi.2019.e00119.

Ponomarenko, G. V., Kovalenko, V. L., Balatskiy, Y. O., Ponomarenko, O. V., Paliy, A. P. and Shulyak, S. V. (2021) ‘Bactericidal efficiency of preparation based on essential oils used in aerosol disinfection in the presence of poultry’, Regulatory Mechanisms in Biosystems, 12(4), pp. 635‒641. doi: 10.15421/022187.

Ren, Z., Han, J., Zhang, X., Yan, Z. and Wei, Q. (2024) ‘Effective of different industrial disinfection in subzero cold-chain environment’, Scientific Reports, 14(1), p. 12651. doi: 10.1038/s41598-024-62204-x.

Rolbiecki, L. and Izdebska, J. N. (2024) ‘Modern strategies for diagnosis and treatment of parasitic diseases’, International Journal of Molecular Sciences, 25(12), p. 6373. doi: 10.3390/ijms25126373.

Sonthipet, S., Ruenphet, S. and Takehara, K. (2018) ‘Bactericidal and virucidal efficacies of potassium monopersulfate and its application for inactivating Avian influenza virus on virus-spiked clothes’, Journal of Veterinary Medical Science, 80(4), pp. 568‒573. doi: 10.1292/jvms.17-0599.

Steinbaum, L., Njenga, S. M., Kihara, J., Boehm, A. B., Davis, J., Null, C. and Pickering, A. J. (2016) ‘Soil-transmitted helminth eggs are present in soil at multiple locations within households in Rural Kenya’, PLoS One, 11(6), p. e0157780. doi: 10.1371/journal.pone.0157780.

Tadege, B., Mekonnen, Z., Dana, D., Sharew, B., Dereje, E., Loha, E., Verweij, J. J., Casaert, S., Vlaminck, J., Ayana, M. and Levecke, B. (2022) ‘Assessment of environmental contamination with soil-transmitted helminths life stages at school compounds, households and open markets in Jimma Town, Ethiopia’, PLoS Neglected Tropical Diseases, 16(4), p. e0010307. doi: 10.1371/journal.pntd.0010307.

Tyski, S., Bocian, E. and Laudy, A. E. (2024) ‘Animal health protection — Assessing antimicrobial activity of veterinary disinfectants and antiseptics and their compliance with European standards: A narrative review’, Polish Journal of Microbiology, 73(4), pp. 413‒431. doi: 10.33073/pjm-2024-043.

Umemura, T., Mutoh, Y., Maeda, M., Hagihara, M., Ohta, A., Mizuno, T., Kato, H., Sukawa, M., Yamada, T., Ikeda, Y., Mikamo, H. and Ichihara, T. (2022) ‘Impact of hospital environmental cleaning with a potassium peroxymonosulphate-based environmental disinfectant and antimicrobial stewardship on the reduction of hospital-onset Clostridioides difficile infections’, Journal of Hospital Infection, 129, pp. 181‒188. doi: 10.1016/j.jhin.2022.06.018.

Zhang, Y., Chen, G., Zhou, S., He, L., Ayanniyi, O. O., Xu, Q., Yue, Z. and Yang, C. (2024) ‘APDDD: Animal parasitic diseases and drugs database’, Comparative Immunology, Microbiology and Infectious Diseases, 104, p. 102096. doi: 10.1016/j.cimid.2023.102096.