Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
11, Issue 4, November 2025, Pages 32–36
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
MICROBIOLOGICAL
STUDY OF FIELD CULTURES OF MYCOBACTERIUM SPP. AS CONTAMINANTS OF
MILK AND THE ENVIRONMENT
Sosnytska A. O., Zazharskyi V. V.
Dnipro State Agrarian and
Economic University, Dnipro, Ukraine, e-mail: zazharskiy@gmail.com
Download
PDF (print version)
Citation for print version: Sosnytska, A. O.
and Zazharskyi, V. V. (2025) ‘Microbiological study of field cultures of Mycobacterium spp.
as contaminants of milk and the environment’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 11(4), pp. 32–36.
Download
PDF (online version)
Citation for online version: Sosnytska, A. O.
and Zazharskyi, V. V. (2025) ‘Microbiological study of field cultures of Mycobacterium spp.
as contaminants of milk and the environment’, Journal for Veterinary Medicine, Biotechnology and
Biosafety, 11(4), pp. 32–36. DOI: 10.36016/JVMBBS-2025-11-4-5.
Summary. Atypical nonpathogenic nontuberculous
mycobacteria are common in the environment and can contaminate livestock
facilities, feed, animals, animal products, and manure. These prokaryotes are
saprophytes, but they share antigenic similarities with emerging mycobacterial
pathogens. Upon contact with animals, they trigger an immune response through
complexes of mycobacterial antigens in the host. This can cause errors in
immunodiagnostic tests and microbiological assessments of outbreak situations.
Microbiological monitoring of livestock products and milk has shown widespread
environmental contamination with nonpathogenic, saprophytic, atypical
mycobacteria of various species, mainly group IV by Runyon. These are
fast-growing, hardy prokaryotes tolerant to a wide range of cultivation
conditions and temperatures, with broad adaptability for extracellular
enzymatic breakdown of organic macromolecules. The epidemiological concern is
that atypical mycobacteria belong to the genus Mycobacterium and share
antigenic complexes with pathogenic mycobacteria, leading to false-positive
allergic reactions and diagnostic confusion in microbiological tests.
Biological testing on guinea pigs demonstrated that ubiquitous atypical
mycobacteria, common contaminants of milk and manure, do not cause pathological
changes in internal organs during necropsy. However, during simultaneous
allergy testing, they had significantly stronger reactions to sensitin from atypical mycobacteria. In contrast, responses
to tuberculin from pathogenic mycobacteria were weak or absent. Saprophytic
mycobacteria are part of the normal, transient microbiota
of animals and serve as a barrier in integumentary tissues
Keywords: atypical
mycobacteria, ubiquity, nonpathogenicity, manure and
milk contamination, false-positive allergic reactions, bioassay, guinea pigs
References:
Abdulla, N. R.,
Abdullah, F. A., Kadhum, A. A.,
Ghanyem, H. S. and Abdulla, N. R.
(2024) ‘PCR detection of nontuberculous
mycobacteria 16s rRNA in
cows and sheep Subclinical mastitis’, Advances
in Animal and Veterinary Sciences, 12(10), pp. 1969‒1975. doi: 10.17582/journal.aavs/2024/12.10.1969.1975.
Atlas, R. M.
(2010) Handbook of Microbiological Media. 4th ed. Boca
Raton: CRC Press. doi: 10.1201/ebk1439804063.
Bihdan, O., Parchenko, V., Zazharskyi, V.,
Fotina, T. and Davydenko, P.
(2018) ‘Influence of 3-(3-fluorophenyl)-6-(4-methoxyphenyl)-7h-[1,2,4]-triazolo-[3,4-b][1,3,4]thiadiazine
on the cultural properties of pathogenic Mycobacterium
bovis’, Research
Journal of Pharmaceutical, Biological and Chemical Sciences, 9(6),
pp. 166‒170. Available at: https://www.rjpbcs.com/pdf/2018_9(6)/[21].pdf.
Chen, S., Liu, M., Li, Y.,
Zhang, J., Li, Y., Liang, Y., Fan, X. and Qu, Y. (2025) ‘High-throughput sequencing of nontuberculous mycobacterial flora and Mycobacterium abscessus in cattle farms
and slaughterhouses in China’, Veterinary
Sciences, 12(3), p. 275. doi: 10.3390/vetsci12030275.
Gomez-Buendia, A., Alvarez, J., Bezos, J., Mourelo, J., Amado, J., Saez, J. L.,
de Juan, L. and Romero, B. (2024) ‘Non-tuberculous
mycobacteria: Occurrence in skin test cattle reactors from official
tuberculosis-free herds’, Frontiers in Veterinary Science, 11, p. 1361788. doi: 10.3389/fvets.2024.1361788.
Hotsulia, A. S.,
Zazharskyi, V. V., Davydenko, P. O.,
Kulishenko, O. M., Parchenko, V. V.,
Bushuieva, I. V., Grynchyshyn, N. M.,
Gutyj, B. V., Magrelo, N. V.,
Prysyazhnyuk, V. Yu., Sus, G. V.
and Vus, U. M. (2021) ‘Experimental
simulation of tuberculosis and its features in rabbits under conditions of
isoniazid and N'-(2-(5-((theophyline-7-yl)methyl)-4-ethyl)-1,2,4-triazole-3-ylthio)acetyl)isonicotinohydrozide’,
Ukrainian Journal of Ecology, 11(3),
pp. 135‒140. Available at: https://www.ujecology.com/articles/experimental-simulation-of-tuberculosis-and-its-features-in-rabbits-under-conditions-of-isoniazid-and-emnem25theophyline7yl-methyl-77862.html.
Kassich, V. Yu.,
Ukhovskyi, V. V., Sosnytskyi, O. I.,
Biben, I. A., Zazharsky, V. V.
and Kassich, O. V. (2019)
‘Ecologically safe method to control the epidemic situation on animal
tuberculosis in Ukraine’, World of
Medicine and Biology, 2, pp. 220‒225. doi: 10.26724/2079-8334-2019-2-68-220-225.
Magee, J. G.
and Ward, A. C. (2015) ‘Mycobacterium’, in Bergey’s
Manual of Systematics of Archaea and Bacteria. Wiley, pp. 1–84. doi: 10.1002/9781118960608.gbm00029.
O’Brien, M. E. R.,
Anderson, H., Kaukel, E.,
O’Byrne, K., Pawlicki, M., Von Pawel, J., and Reck, M.
(2004) ‘SRL172 (killed Mycobacterium vaccae)
in addition to standard chemotherapy, improves quality of life without
affecting survival, in patients with advanced non-small-cell lung cancer:
Phase III results’, Annals of
Oncology, 15(6), pp. 906‒914. doi: 10.1093/annonc/mdh220.
Reber, S. O.,
Siebler, P. H., Donner, N. C.,
Morton, J. T., Smith, D. G., Kopelman, J. M.,
Lowe, K. R., Wheeler, K. J., Fox, J. H., Hassell, J. E., Greenwood, B. N., Jansch, C., Lechner, A.,
Schmidt, D., Uschold-Schmidt, N., Füchsl, A. M., Langgartner, D.,
Walker, F. R., Hale, M. W., Lopez Perez, G., Van Treuren, W., González, A., Halweg-Edwards, A. L., Fleshner, M.,
Raison, C. L., Rook, G. A., Peddada, S. D.,
Knight, R. and Lowry, C. A. (2016) ‘Immunization with a
heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress
resilience in mice’, Proceedings of the National Academy of Sciences,
113(22), pp. E3130‒E3139. doi: 10.1073/pnas.1600324113.
Runyon, E. H.
(1965) ‘Typical mycobacteria: Their classification’, American
Review of Respiratory Disease, 91,
pp. 288–289. Available at: https://www.atsjournals.org/doi/abs/10.1164/arrd.1965.91.2.288.
Solaghani, T. H., Nazari, R.,
Mosavari, N., Tadayon, K.
and Zolfaghari, M. R. (2023)
‘Isolation and identification of nontuberculous
mycobacteria from raw milk and traditional cheese based on the 16S rRNA and hsp65
genes, Tehran, Iran’, Folia Microbiologica,
69(1), pp. 81‒89. doi: 10.1007/s12223-023-01073-9.
Tkachenko, O. A., Zazharskiy, V. V.,
Bilan, M. V. and Kovalova, L.
(2010) ‘Features manifestation of Bovine tuberculosis manifestation in a
long-term unhealthy farm’ [Osoblyvosti proiavu tuberkulozu velykoi rohatoi khudoby tryvalo neblahopoluchnoho hospodarstva], News
of Dniproptrovsk State Agrarian and Economic
University [Visnyk Dnipropetrovskoho
derzhavnoho ahrarnoho universytetu], 1,
pp. 100‒103. Available at: https://dspace.dsau.dp.ua/handle/123456789/6110.
Tkachenko, O. A.,
Davydenko, P. O., Zazharskiy, V. V.,
and Brygadyrenko, V. V. (2016)
‘Biological properties of dissociative L- and other forms of Mycobacterium bovis’
[Biolohichni vlastyvosti dysotsiatyvnykh L- ta inshykh
form Mycobacterium bovis],
Visnyk of Dnipropetrovsk
University. Biology, Ecology [Visnyk
Dnipropetrovskoho universytetu.
Biolohiia,
ekolohiia], 24(2),
pp. 338‒346. doi:
10.15421/011644. [in Ukrainian].
Van Ingen, J., Ferro, B. E., Hoefsloot, W.,
Boeree, M. J. and Van Soolingen, D. (2013) ‘Drug treatment of
pulmonary nontuberculous mycobacterial disease in HIV‑negative
patients: The evidence’, Expert Review of Anti-Infective Therapy, 11(10), pp. 1065–1077. doi: 10.1586/14787210.2013.830413.
Zazharskyi, V. V.,
Alifonova, K. V., Brygadyrenko, V. V.,
Zazharska, N. M., Goncharenko, V. P.
and Solomon, V. V. (2023) ‘The ability of Sitophilus oryzae (Coleoptera,
Curculionidae) to transmit Mycobacterium bovis: Morphology, cultural
biochemical properties of the bacteria’, Regulatory Mechanisms in Biosystems, 14(3), pp. 476–486. doi: 10.15421/10.15421/022368.
