Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 11, Issue 4, November 2025, Pages 32–36

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

MICROBIOLOGICAL STUDY OF FIELD CULTURES OF MYCOBACTERIUM SPP. AS CONTAMINANTS OF MILK AND THE ENVIRONMENT

Sosnytska A. O., Zazharskyi V. V.

Dnipro State Agrarian and Economic University, Dnipro, Ukraine, e-mail: zazharskiy@gmail.com

Download PDF (print version)

Citation for print version: Sosnytska, A. O. and Zazharskyi, V. V. (2025) ‘Microbiological study of field cultures of Mycobacterium spp. as contaminants of milk and the environment’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(4), pp. 32–36.

Download PDF (online version)

Citation for online version: Sosnytska, A. O. and Zazharskyi, V. V. (2025) ‘Microbiological study of field cultures of Mycobacterium spp. as contaminants of milk and the environment’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(4), pp. 32–36. DOI: 10.36016/JVMBBS-2025-11-4-5.

Summary. Atypical nonpathogenic nontuberculous mycobacteria are common in the environment and can contaminate livestock facilities, feed, animals, animal products, and manure. These prokaryotes are saprophytes, but they share antigenic similarities with emerging mycobacterial pathogens. Upon contact with animals, they trigger an immune response through complexes of mycobacterial antigens in the host. This can cause errors in immunodiagnostic tests and microbiological assessments of outbreak situations. Microbiological monitoring of livestock products and milk has shown widespread environmental contamination with nonpathogenic, saprophytic, atypical mycobacteria of various species, mainly group IV by Runyon. These are fast-growing, hardy prokaryotes tolerant to a wide range of cultivation conditions and temperatures, with broad adaptability for extracellular enzymatic breakdown of organic macromolecules. The epidemiological concern is that atypical mycobacteria belong to the genus Mycobacterium and share antigenic complexes with pathogenic mycobacteria, leading to false-positive allergic reactions and diagnostic confusion in microbiological tests. Biological testing on guinea pigs demonstrated that ubiquitous atypical mycobacteria, common contaminants of milk and manure, do not cause pathological changes in internal organs during necropsy. However, during simultaneous allergy testing, they had significantly stronger reactions to sensitin from atypical mycobacteria. In contrast, responses to tuberculin from pathogenic mycobacteria were weak or absent. Saprophytic mycobacteria are part of the normal, transient microbiota of animals and serve as a barrier in integumentary tissues

Keywords: atypical mycobacteria, ubiquity, nonpathogenicity, manure and milk contamination, false-positive allergic reactions, bioassay, guinea pigs

References:

Abdulla, N. R., Abdullah, F. A., Kadhum, A. A., Ghanyem, H. S. and Abdulla, N. R. (2024) ‘PCR detection of nontuberculous mycobacteria 16s rRNA in cows and sheep Subclinical mastitis’, Advances in Animal and Veterinary Sciences, 12(10), pp. 1969‒1975. doi: 10.17582/journal.aavs/2024/12.10.1969.1975.

Atlas, R. M. (2010) Handbook of Microbiological Media. 4th ed. Boca Raton: CRC Press. doi: 10.1201/ebk1439804063.

Bihdan, O., Parchenko, V., Zazharskyi, V., Fotina, T. and Davydenko, P. (2018) ‘Influence of 3-(3-fluorophenyl)-6-(4-methoxyphenyl)-7h-[1,2,4]-triazolo-[3,4-b][1,3,4]thiadiazine on the cultural properties of pathogenic Mycobacterium bovis’, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9(6), pp. 166‒170. Available at: https://www.rjpbcs.com/pdf/2018_9(6)/[21].pdf.

Chen, S., Liu, M., Li, Y., Zhang, J., Li, Y., Liang, Y., Fan, X. and Qu, Y. (2025) ‘High-throughput sequencing of nontuberculous mycobacterial flora and Mycobacterium abscessus in cattle farms and slaughterhouses in China’, Veterinary Sciences, 12(3), p. 275. doi: 10.3390/vetsci12030275.

Gomez-Buendia, A., Alvarez, J., Bezos, J., Mourelo, J., Amado, J., Saez, J. L., de Juan, L. and Romero, B. (2024) ‘Non-tuberculous mycobacteria: Occurrence in skin test cattle reactors from official tuberculosis-free herds’, Frontiers in Veterinary Science, 11, p. 1361788. doi: 10.3389/fvets.2024.1361788.

Hotsulia, A. S., Zazharskyi, V. V., Davydenko, P. O., Kulishenko, O. M., Parchenko, V. V., Bushuieva, I. V., Grynchyshyn, N. M., Gutyj, B. V., Magrelo, N. V., Prysyazhnyuk, V. Yu., Sus, G. V. and Vus, U. M. (2021) ‘Experimental simulation of tuberculosis and its features in rabbits under conditions of isoniazid and N'-(2-(5-((theophyline-7-yl)methyl)-4-ethyl)-1,2,4-triazole-3-ylthio)acetyl)isonicotinohydrozide’, Ukrainian Journal of Ecology, 11(3), pp. 135‒140. Available at: https://www.ujecology.com/articles/experimental-simulation-of-tuberculosis-and-its-features-in-rabbits-under-conditions-of-isoniazid-and-emnem25theophyline7yl-methyl-77862.html.

Kassich, V. Yu., Ukhovskyi, V. V., Sosnytskyi, O. I., Biben, I. A., Zazharsky, V. V. and Kassich, O. V. (2019) ‘Ecologically safe method to control the epidemic situation on animal tuberculosis in Ukraine’, World of Medicine and Biology, 2, pp. 220‒225. doi: 10.26724/2079-8334-2019-2-68-220-225.

Magee, J. G. and Ward, A. C. (2015) ‘Mycobacterium’, in Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley, pp. 1–84. doi: 10.1002/9781118960608.gbm00029.

O’Brien, M. E. R., Anderson, H., Kaukel, E., O’Byrne, K., Pawlicki, M., Von Pawel, J., and Reck, M. (2004) ‘SRL172 (killed Mycobacterium vaccae) in addition to standard chemotherapy, improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: Phase III results’, Annals of Oncology, 15(6), pp. 906‒914. doi: 10.1093/annonc/mdh220.

Reber, S. O., Siebler, P. H., Donner, N. C., Morton, J. T., Smith, D. G., Kopelman, J. M., Lowe, K. R., Wheeler, K. J., Fox, J. H., Hassell, J. E., Greenwood, B. N., Jansch, C., Lechner, A., Schmidt, D., Uschold-Schmidt, N., Füchsl, A. M., Langgartner, D., Walker, F. R., Hale, M. W., Lopez Perez, G., Van Treuren, W., González, A., Halweg-Edwards, A. L., Fleshner, M., Raison, C. L., Rook, G. A., Peddada, S. D., Knight, R. and Lowry, C. A. (2016) ‘Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice’, Proceedings of the National Academy of Sciences, 113(22), pp. E3130‒E3139. doi: 10.1073/pnas.1600324113.

Runyon, E. H. (1965) ‘Typical mycobacteria: Their classification’, American Review of Respiratory Disease, 91, pp. 288–289. Available at: https://www.atsjournals.org/doi/abs/10.1164/arrd.1965.91.2.288.

Solaghani, T. H., Nazari, R., Mosavari, N., Tadayon, K. and Zolfaghari, M. R. (2023) ‘Isolation and identification of nontuberculous mycobacteria from raw milk and traditional cheese based on the 16S rRNA and hsp65 genes, Tehran, Iran’, Folia Microbiologica, 69(1), pp. 81‒89. doi: 10.1007/s12223-023-01073-9.

Tkachenko, O. A., Zazharskiy, V. V., Bilan, M. V. and Kovalova, L. (2010) ‘Features manifestation of Bovine tuberculosis manifestation in a long-term unhealthy farm’ [Osoblyvosti proiavu tuberkulozu velykoi rohatoi khudoby tryvalo neblahopoluchnoho hospodarstva], News of Dniproptrovsk State Agrarian and Economic University [Visnyk Dnipropetrovskoho derzhavnoho ahrarnoho universytetu], 1, pp. 100‒103. Available at: https://dspace.dsau.dp.ua/handle/123456789/6110.

Tkachenko, O. A., Davydenko, P. O., Zazharskiy, V. V., and Brygadyrenko, V. V. (2016) ‘Biological properties of dissociative L- and other forms of Mycobacterium bovis’ [Biolohichni vlastyvosti dysotsiatyvnykh L- ta inshykh form Mycobacterium bovis], Visnyk of Dnipropetrovsk University. Biology, Ecology [Visnyk Dnipropetrovskoho universytetu. Biolohiia, ekolohiia], 24(2), pp. 338‒346. doi: 10.15421/011644. [in Ukrainian].

Van Ingen, J., Ferro, B. E., Hoefsloot, W., Boeree, M. J. and Van Soolingen, D. (2013) ‘Drug treatment of pulmonary nontuberculous mycobacterial disease in HIV‑negative patients: The evidence’, Expert Review of Anti-Infective Therapy, 11(10), pp. 1065–1077. doi: 10.1586/14787210.2013.830413.

Zazharskyi, V. V., Alifonova, K. V., Brygadyrenko, V. V., Zazharska, N. M., Goncharenko, V. P. and Solomon, V. V. (2023) ‘The ability of Sitophilus oryzae (Coleoptera, Curculionidae) to transmit Mycobacterium bovis: Morphology, cultural biochemical properties of the bacteria’, Regulatory Mechanisms in Biosystems, 14(3), pp. 476–486. doi: 10.15421/10.15421/022368.