Journal for Veterinary Medicine, Biotechnology and Biosafety

Volume 11, Issue 4, November 2025, Pages 3–11

ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)

EFFECT OF ZINC CARBONATE NANOPARTICLES SUBCHRONIC INTAKE ON ANTIOXIDANT STATUS OF MALE RABBITS

Koshevoy V. I. 1, Naumenko S. V. 1, Bespalova I. I. 2, Yefimova S. L. 2

1 State Biotechnological University, Kharkiv, Ukraine, e-mail: koshevoyvsevolod@gmail.com

2 Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

Download PDF (print version)

Citation for print version: Koshevoy, V. I., Naumenko, S. V., Bespalova, I. I. and Yefimova, S. L. (2025) ‘Effect of zinc carbonate nanoparticles subchronic intake on antioxidant status of male rabbits’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(4), pp. 3–11.

Download PDF (online version)

Citation for online version: Koshevoy, V. I., Naumenko, S. V., Bespalova, I. I. and Yefimova, S. L. (2025) ‘Effect of zinc carbonate nanoparticles subchronic intake on antioxidant status of male rabbits’, Journal for Veterinary Medicine, Biotechnology and Biosafety, 11(4), pp. 3–11. DOI: 10.36016/JVMBBS-2025-11-4-1.

Summary. An urgent scientific task is to develop modern and safe zinc-based nanoparticles that can fulfill rabbits’ need for this essential mineral. This research primarily focuses on enhancing the bioavailability of zinc and reducing its toxic properties. To evaluate the antioxidant effect of zinc carbonate nanoparticles, 24 sexually mature male Hiplus rabbits were used, which were randomly divided into two groups of four animals and three replicates each. The rabbits in the experimental group were orally administered zinc carbonate nanoparticles obtained by the co-precipitation method and stabilized with polyvinylpyrrolidone at a dose of 100 mg/kg body weight for 30 days. Animals in the control group received distilled water according to a similar procedure. At the end of the experiment, blood samples were taken from all animals for biochemical studies. The presence of redox activity of these nanoparticles in the organism of male rabbits was established: after administration in the experimental group of animals, a significant decrease in peroxidation markers was noted: the level of thiobarbiturate-active products by 24.5%, diene conjugates by 18.7% and lipid hydroperoxides by 16.2% (p < 0.05). A significant increase in the total antioxidant activity (by 40.2%), the content of enzymatic and non-enzymatic components of the antioxidant defense system was confirmed by the expressive antioxidant effect of zinc carbonate nanoparticles: superoxide dismutase activity by 68.9%, catalase by 18.3%, glutathione peroxidase by 27.6%, glutathione reductase by 34.6% and reduced glutathione content by 15.7% (p < 0.05). Thus, it can be argued that there is an antioxidant effect of zinc carbonate nanoparticles for male rabbits. The authors of the article consider the study of the effect of these nanoparticles on the state of sexual function in rabbits, as well as pharmacokinetic studies, to be prospects for further research

Keywords: bioavailability, toxicity, blood, biochemical parameters

References:

Abbas, A., Muhammad, S. A., Ashar, A, Mehfooz, S. A., Rauf, A., Bakhsh, M., Nadeem, T. and Fu, H. (2023) ‘Comparison of the effect of zinc oxide nanoparticles and extract of Acorus calamus applied topically on surgical wounds inflicted on the skin of rabbits’, Polish Journal of Veterinary Sciences, 26(2), pp. 285–293. doi: 10.24425/pjvs.2023.145035.

Abd El-Hack, M. E., Ashour, E. A., Aljahdali, N., Zabermawi, N. M., Baset, S. A., Kamal, M., Radhi, K. S., Moustafa, M., Algopishi, U., Alshaharni, M. O. and Bassiony, S. S. (2024) ‘Does the dietary supplementation of organic nano-zinc as a growth promoter impact broiler’s growth, carcass and meat quality traits, blood metabolites and cecal microbiota?’, Poultry Science, 103(5), p. 103550. doi: 10.1016/j.psj.2024.103550.

Abdelnour, S. A., Abdelaal, M., Sindi, R. A., Alfattah, M. A., Khalil, W. A., Bahgat, L. B. and Sheiha, A. M. (2025) ‘Physio-metabolic response, immune function, epigenetic markers, and reproductive performance of rabbits under environmental stress: The mitigating role of boswellia essential oil nanoemulsion’, BMC Veterinary Research, 21(1), p. 168. doi: 10.1186/s12917-025-04587-1.

Abdel-Wareth, A. A., Al-Kahtani, M. A., Alsyaad, K. M., Shalaby, F. M., Saadeldin, I. M., Alshammari, F. A., Mobashar, M., Suleiman, M. H., Ali, A. H., Taqi, M. O., El-Sayed, H. G. M., El-Sadek, M. S. A., Metwally, A. E. and Ahmed, A. E. (2020) ‘Combined supplementation of nano-zinc oxide and thyme oil improves the nutrient digestibility and reproductive fertility in the male Californian rabbits’, Animals, 10(12), p. 2234. doi: 10.3390/ani10122234.

Abdel-Wareth, A. A. A., Amer, S. A., Mobashar, M. and El-Sayed, H. G. M. (2022) ‘Use of zinc oxide nanoparticles in the growing rabbit diets to mitigate hot environmental conditions for sustainable production and improved meat quality’, BMC Veterinary Research, 18(1), p. 354. doi: 10.1186/s12917-022-03451-w.

Abdel-Wareth, A. A. A., El-Sayed, H. G. M., Abdel-Warith, A. A., Younis, E. M., Hassan, H. A., Afifi, A. S., El-Chaghaby, G. A., Rashad, S., Amer, S. A. and Lohakare, J. (2023a) ‘Effects of dietary Acacia nilotica fruit, zinc oxide nanoparticles and their combination on productive performance, zinc retention, and blood biochemistry of rabbits’, Animals, 13(20), p. 3296. doi: 10.3390/ani13203296.

Abdel-Wareth, A. A. A., Raslan, M. A. H., Ismail, Z. S. H., Salem, W. and Lohakare, J. (2023b) ‘Effects of zinc oxide nanoparticle supplementation on performance, digestibility, and blood biochemistry of Californian male rabbits under hot climatic conditions’, Biological Trace Element Research, 201(7), pp. 3418–3427. doi: 10.1007/s12011-022-03432-y.

Abouzeinab, N. S., Kahil, N., Fakhruddin, N., Awad, R. and Khalil, M. I. (2023) ‘Intraperitoneal hepato-renal toxicity of zinc oxide and nickel oxide nanoparticles in male rats: Biochemical, hematological and histopathological studies’, EXCLI Journal, 22, pp. 619–644. doi: 10.17179/excli2023-6237.

Alqahtani, A. N. (2025) ‘Impact of dietary zinc nanoparticles and probiotics on broiler health and productivity’, Journal of Advanced Veterinary and Animal Research, 12(1), pp. 19–32. doi: 10.5455/javar.2025.l868.

Alrashedi, S. S., Almasmoum, H. A. and Eldiasty, J. G. (2024) ‘The effect of dietary eugenol nano-emulsion supplementation on growth performance, serum metabolites, redox homeostasis, immunity, and pro-inflammatory responses of growing rabbits under heat stress’, Open Veterinary Journal, 14(3), pp. 830–839. doi: 10.5455/OVJ.2024.v14.i3.10.

Awad, N. F. S., Hashem, Y. M., Elshater, N. S., Khalifa, E., Hamed, R. I., Nossieur, H. H., Abd-Allah, E. M., Elazab, S. T., Nassan, M. A. and El-Hamid, M. I. A. (2022) ‘Therapeutic potentials of aivlosin and/or zinc oxide nanoparticles against Mycoplasma gallisepticum and/or Ornithobacterium rhinotracheale with a special reference to the effect of zinc oxide nanoparticles on aivlosin tissue residues: An in vivo approach’, Poultry Science, 101(6), p. 101884. doi: 10.1016/j.psj.2022.101884.

Azeez, S., Fatima, M., Gul, O., Rehman, H., Shad, M. A. and Nawaz, H. (2024) ‘Zinc oxide nanoparticles-doped curcumin-assisted recovery of rheumatoid arthritis and antioxidant status in experimental rabbits’, BioMedicine, 14(2), pp. 49–59. doi: 10.37796/2211-8039.1446.

Bashar, A. M., Abdelnour, S. A., El-Darawany, A. A. and Sheiha, A. M. (2024) ‘Dietary supplementation of microalgae and/or nanominerals mitigate the negative effects of heat stress in growing rabbits’, Biological Trace Element Research, 202(8), pp. 3639–3652. doi: 10.1007/s12011-023-03953-0.

Bashir, S., Awan, M. S., Farrukh, M. A., Naidu, R., Khan, S. A., Rafique, N., Ali, S., Hayat, I., Hussain, I. and Khan, M. Z. (2022) ‘In-vivo (albino mice) and in-vitro assimilation and toxicity of zinc oxide nanoparticles in food materials’, International Journal of Nanomedicine, 17, pp. 4073–4085. doi: 10.2147/IJN.S372343.

Bozer, B. D., Dede, A. and Güven, K. (2024) ‘Green synthesized zinc oxide nanoparticles with Salvadora persica L. root extract and their antagonistic activity against oral and health-threatening pathogens’, Indian Journal of Microbiology, 64(4), pp. 1903–1911. doi: 10.1007/s12088-024-01276-9.

CE (The Council of Europe). (1986) European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. (European Treaty Series, No. 123). Strasbourg: The Council of Europe. Available at: https://conventions.coe.int/treaty/en/treaties/html/123.htm.

CEC (The Council of the European Communities) (2010) ‘Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes’, The Official Journal of the European Communities, L 276, pp. 33–79. Available at: http://data.europa.eu/eli/dir/2010/63/oj.

Dahran, N., Abd-Elhakim, Y. M., Mohamed, A. A., Abd-Elsalam, M. M., Said, E. N., Metwally, M. M., Abdelhamid, A. E., Hassan, B. A., Alsieni, M., Alosaimi, M. E., Abduljabbar, M. H. and El-Shetry, E. S. (2023) ‘Palliative effect of Moringa olifera-mediated zinc oxide nanoparticles against acrylamide-induced neurotoxicity in rats’, Food and Chemical Toxicology, 171, p. 113537. doi: 10.1016/j.fct.2022.113537.

Deguchi, S., Ogata, F., Isaka, T., Otake, H., Nakazawa, Y., Kawasaki, N. and Nagai, N. (2021) ‘Prevention of postprandial hyperglycemia by ophthalmic nanoparticles based on protamine zinc insulin in the rabbit’, Pharmaceutics, 13(3), p. 375. doi: 10.3390/pharmaceutics13030375.

Ebeid, T. A., Aljabeili, H. S., Al-Homidan, I. H., Volek, Z. and Barakat, H. (2023) ‘Ramifications of heat stress on rabbit production and role of nutraceuticals in alleviating its negative impacts: An updated review’, Antioxidants, 12(7), p. 1407. doi: 10.3390/antiox12071407.

El-Saadony, M. T., Fang, G., Yan, S., Alkafaas, S. S., El Nasharty, M. A., Khedr, S. A., Hussien, A. M., Ghosh, S., Dladla, M., Elkafas, S. S., Ibrahim, E. H., Salem, H. M., Mosa, W. F., Ahmed, A. E., Mohammed, D. M., Korma, S. A., El-Tarabily, M. K., Saad, A. M., El-Tarabily, K. A. and AbuQamar, S. F. (2024) ‘Green synthesis of zinc oxide nanoparticles: Preparation, characterization, and biomedical applications — A review’, International Journal of Nanomedicine, 19, pp. 12889–12937. doi: 10.2147/IJN.S487188.

Elshaer, N., Eldeeb, A. M., Aioub, A. A., Hashem, A. S., Ghosh, S., Alkeridis, L. A., Alshehri, M. A., Shukry, M., Almalki, D. A., Alkhatabi, H. A., Afifi, M., Al-Farga, A., Hendawy, M. A. and El-Sobki, A. E. A. (2025) ‘Zinc nanoparticles mitigate azoxystrobin and its nanoencapsulation-induced hepatic and renal toxicity in rats’, Redox Report: Communications in Free Radical Research, 30(1), p. 2491318. doi: 10.1080/13510002.2025.2491318.

El-Shobokshy, S. A., Abo-Samaha, M. I., Sahwan, F. M., El-Rheem, S. M. A., Emam, M. and Khafaga, A. F. (2023) ‘Implication of apoptosis and oxidative stress in mitigation of ivermectin long-term hazards by zinc nanoparticles in male rabbits’, Environmental Science and Pollution Research International, 30(10), pp. 26982–26997. doi: 10.1007/s11356-022-24095-1.

Fatima, A., Zaheer, T., Pal, K., Abbas, R. Z., Akhtar, T., Ali, S. and Mahmood, M. S. (2024) ‘Zinc oxide nanoparticles significant role in poultry and novel toxicological mechanisms’, Biological Trace Element Research, 202(1), pp. 268–290. doi: 10.1007/s12011-023-03651-x.

Fujihara, J. and Nishimoto, N. (2024) ‘Review of zinc oxide nanoparticles: toxicokinetics, tissue distribution for various exposure routes, toxicological effects, toxicity mechanism in mammals, and an approach for toxicity reduction’, Biological Trace Element Research, 202(1), pp. 9–23. doi: 10.1007/s12011-023-03644-w.

Gomez-Zavaglia, A., Cassani, L., Hebert, E. M. and Gerbino, E. (2022) ‘Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics’, Food Research International, 155, p. 111097. doi: 10.1016/j.foodres.2022.111097.

Gur, T., Meydan, I., Seckin, H., Bekmezci, M. and Sen, F. (2022) ‘Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles’, Environmental Research, 204(Pt A), p. 111897. doi: 10.1016/j.envres.2021.111897.

Halo, M. Jr., Bułka, K., Antos, P. A., Greń, A., Slanina, T., Ondruška, Ľ., Tokárová, K., Massányi, M., Formicki, G., Halo, M. and Massányi, P. (2021) ‘The effect of ZnO nanoparticles on rabbit spermatozoa motility and viability parameters in vitro’, Saudi Journal of Biological Sciences, 28(12), pp. 7450–7454. doi: 10.1016/j.sjbs.2021.08.045.

Hanini, A., Massoudi, M. E., Gavard, J., Kacem, K., Ammar, S. and Souilem, O. (2016) ‘Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit’, Environmental Toxicology and Pharmacology, 45, pp. 321–327. doi: 10.1016/j.etap.2016.06.010.

Hassan, F. A. M., Kishawy, A. T. Y., Moustafa, A. and Roushdy, E. M. (2021) ‘Growth performance, tissue precipitation, metallothionein and cytokine transcript expression and economics in response to different dietary zinc sources in growing rabbits’, Journal of Animal Physiology and Animal Nutrition, 105(5), pp. 965–974. doi: 10.1111/jpn.13550.

Hassan, F. A., Elkassas, N. E. M., El-Bltagy, E. A., Mohamed, M. S., Mobarez, S., Salim, I. H. and Abdel-Aal, M. M. (2023) ‘Dietary zinc-chitosan nanoparticles addition influences on growth performance, apparent total tract digestibility, carcass indices, and immune function in weaned rabbits’, Animal Biotechnology, 34(9), pp. 4819–4827. doi: 10.1080/10495398.2023.2197467.

Hassan, M. U., Guoqin, H., Ahmad, N., Khan, T. A., Nawaz, M., Shah, A. N., Rasheed, A., Asseri, T. A. Y. and Ercisli, S. (2024) ‘Multifaceted roles of zinc nanoparticles in alleviating heavy metal toxicity in plants: A comprehensive review and future perspectives’, Environmental Science and Pollution Research International, 31(52), pp. 61356–61376. doi: 10.1007/s11356-024-35018-7.

Herrera-Rodríguez, M. A., Del Pilar Ramos-Godinez, M., Cano-Martínez, A., Segura, F. C., Ruiz-Ramírez, A., Pavón, N., Lira-Silva, E., Bautista-Pérez, R., Thomas, R. S., Delgado-Buenrostro, N. L., Chirino, Y. I. and López-Marure, R. (2023) ‘Food-grade titanium dioxide and zinc oxide nanoparticles induce toxicity and cardiac damage after oral exposure in rats’, Particle and Fibre Toxicology, 20(1), p. 43. doi: 10.1186/s12989-023-00553-7.

Kahil, N., Abouzeinab, N. S., Hussein, M. A. A. and Khalil, M. I. (2024) ‘Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: A systematic review’, Nanotoxicology, 18(7), pp. 583–598. doi: 10.1080/17435390.2024.2407352.

Koshevoy, V., Naumenko, S., Skliarov, P., Syniahovska, K., Vikulina, G., Klochkov, V. and Yefimova, S. (2022) ‘Effect of gadolinium orthovanadate nanoparticles on male rabbits’ reproductive performance under oxidative stress’, World’s Veterinary Journal, 12(3), pp. 296–303. doi: 10.54203/scil.2022.wvj37.

Koshevoy, V., Naumenko, S., Orobchenko, O. and Bespalova, I. (2023) ‘Acute toxicity of zinc carbonate nanocrystals on white mice model’ [Hostra toksychnist nanokrystaliv tsynku karbonatu na modeli bilykh myshei], Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj. Series: Veterinary Sciences [Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho. Seriia: Veterynarni Nauky], 25(112), pp. 123–130. doi: 10.32718/nvlvet11220. [in Ukrainian].

Koshevoy, V. I., Naumenko, S. V., Bespalova, I. I. and Yefimova, S. L. (2025) ‘Hematotoxicity of zinc carbonate nanoparticles in the Wistar rat model’, Ukrainian Journal of Veterinary and Agricultural Sciences, 8(1), pp. 21–26. doi: 10.32718/ujvas8-1.04.

Lee, H. and Park, K. (2019) ‘In vitro cytotoxicity of zinc oxide nanoparticles in cultured statens seruminstitut rabbit cornea cells’, Toxicological Research, 35(3), pp. 287–294. doi: 10.5487/TR.2019.35.3.287.

Malik, A., Alshehri, M. A., Alamery, S. F. and Khan, J. M. (2021) ‘Impact of metal nanoparticles on the structure and function of metabolic enzymes’, International Journal of Biological Macromolecules, 188, pp. 576–585. doi: 10.1016/j.ijbiomac.2021.08.073.

Masoud, S. R., Fathalla, S. I., Shawky, S. M., El-Gendy, H., Alakhras, M. A. Z., Alhotan, R. A., Ayyoub, A., Selim, S., Al-Otaibi, K. D. and El-Seidy, A. M. A. (2025) ‘Potential therapeutic effect of ZnO/CuO nanocomposite as an acaricidal, immunostimulant, and antioxidant in rabbits’, Veterinary Sciences, 12(4), p. 333. doi: 10.3390/vetsci12040333.

Michalak, I., Dziergowska, K., Alagawany, M., Farag, M. R., El-Shall, N. A., Tuli, H. S., Emran, T. B. and Dhama, K. (2022) ‘The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry’, The Veterinary Quarterly, 42(1), pp. 68–94. doi: 10.1080/01652176.2022.2073399.

Moasses, Z., Aryan, A., Mesbah, F. and Mirzaei, E. (2024) ‘Evaluation of the spatial arrangement of rabbit hepatocytes based on Voronoi tessellation following exposure to zinc oxide nanoparticles’, Avicenna Journal of Medical Biotechnology, 16(3), pp. 165–173. doi: 10.18502/ajmb.v16i3.15742.

NasrEldeen, M. S., Ragab, R. S. A., Aboelmaaty, A. M. and Saudi, E. M. (2025) ‘Effect of selenium and zinc nanoparticles supplementations on testicular blood flow, semen, and reproductive hormones in Egyptian native goats subjected to ambient heat stress’, Domestic Animal Endocrinology, 92, p. 106941. doi: 10.1016/j.domaniend.2025.106941.

Naumenko, S., Koshevoy, V., Matsenko, O., Miroshnikova, O., Zhukova, I. and Bespalova, I. (2023) ‘Antioxidant properties and toxic risks of using metal nanoparticles on health and productivity in poultry’, Journal of World`s Poultry Research, 13(3), pp. 292–306. doi: 10.36380/jwpr.2023.32.

Nawaz, H., Naseem, I., Rehman, T. and Nawaz, M. (2021) ‘Optimization of zinc oxide nanoparticle-catalyzed in vitro bilirubin photolysis and in vivo treatment of Hyperbilirubinemia’, Nanomedicine, 16(16), pp. 1377–1390. doi: 10.2217/nnm-2021-0036.

Nelogi, S., Puranik, N., Chindak, S., Chowdhary, R. and Naik, V. (2025) ‘Zinc nanoparticles induced eggshell collagen membrane used for guided bone regeneration: A novel approach in rabbit models’, Odontology, 113(3), pp. 1029–1039. doi: 10.1007/s10266-024-01040-x.

Obaid, H. S., Kamil, H., Abdul, K. S., Judi, H. K., Akrami, S., Saki, M., Adil, H. M. and Fares, H. D. (2024) ‘In vivo and in vitro efficacy of the ithmid kohl/zinc-oxide nanoparticles, ithmid kohl/Aloe vera, and zinc-oxide nanoparticles/Aloe vera for the treatment of Bacterial endophthalmitis’, Scientific Reports, 14(1), p. 15746. doi: 10.1038/s41598-024-66341-1.

Parashar, S., Raj, S., Srivastava, P. and Singh, A. K. (2024) ‘Comparative toxicity assessment of selected nanoparticles using different experimental model organisms’, Journal of Pharmacological and Toxicological Methods, 130, p. 107563. doi: 10.1016/j.vascn.2024.107563.

Park, E. J., Jeong, U., Yoon, C. and Kim, Y. (2017) ‘Comparison of distribution and toxicity of different types of zinc-based nanoparticles’, Environmental Toxicology, 32(4), pp. 1363–1374. doi: 10.1002/tox.22330.

Pei, X., Jiang, H., Li, C., Li, D. and Tang, S. (2023) ‘Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles’, Journal of Hazardous Materials, 442, p. 130039. doi: 10.1016/j.jhazmat.2022.130039.

Rahman, H. S., Othman, H. H., Abdullah, R., Edin, H. A. S. and Al-Haj, N. A. (2022) ‘Beneficial and toxicological aspects of zinc oxide nanoparticles in animals’, Veterinary Medicine and Science, 8(4), pp. 1769–1779. doi: 10.1002/vms3.814.

Saha, S., Roy, S., Jana, S., Sarkar, T., Chanda, S., Datta, P., Chakraborty, B., Mondal, S., Halder, S., Kundu, B. and Nandi, S. K. (2024) ‘Zinc oxide nanoparticles incorporated in poly-hydroxyethyl methacrylate/acrylamide membrane trigger the key events of full-thickness wound healing in a rabbit model’, Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 112(12), p. e35510. doi: 10.1002/jbm.b.35510.

Salimi, A., Rahimi, H. R., Forootanfar, H., Jafari, E., Ameri, A. and Shakibaie, M. (2019) ‘Toxicity of microwave-assisted biosynthesized zinc nanoparticles in mice: A preliminary study’, Artificial Cells, Nanomedicine, and Biotechnology, 47(1), pp. 1846–1858. doi: 10.1080/21691401.2019.1611592.

Serhiienko, V., Koshevoy, V., Naumenko, S., Kotyk, B., Ilina, O., Shchepetilnikov, Y., Makhotina, D. and Marakhovskyi, I. (2025) ‘Oxidative stress markers, antioxidant balance, and protein metabolism in dogs with acute prostatitis’, World’s Veterinary Journal, 15(1), pp. 167–175. doi: 10.54203/scil.2025.wvj19.

Shokri, M., Kharaziha, M., Ahmadi, T. H., Dalili, F., Mehdinavaz, A. R., Ghiassi, S. R. and Baghaban, E. M. (2024) ‘Melatonin-loaded mesoporous zinc- and gallium-doped hydroxyapatite nanoparticles to control infection and bone repair’, Biomaterials Science, 12(16), pp. 4194–4210. doi: 10.1039/d4bm00377b.

Simmonds, R. C. (2017) ‘Chapter 4. Bioethics and animal use in programs of research, teaching, and testing’, in Weichbrod, R. H., Thompson, G. A. and Norton, J. N. (eds.) Management of Animal Care and Use Programs in Research, Education, and Testing. 2nd ed. Boca Raton: CRC Press, pp. 35–62. doi: 10.1201/9781315152189-4.

Swain, P. S., Rao, S. B. N., Rajendran, D., Dominic, G. and Selvaraju, S. (2016) ‘Nano zinc, an alternative to conventional zinc as animal feed supplement: A review’, Animal Nutrition, 2(3), pp. 134–141. doi: 10.1016/j.aninu.2016.06.003.

Tverdokhlib, Y., Naumenko, S., Koshevoy, V., Miroshnikova, O., Syniahovska, K., Kovalova, L. and Hryshchuk, H. (2024) ‘Effect of different methods of ovulation induction on sex hormones in serum, and meat of rabbit does’, World’s Veterinary Journal, 14(1), pp. 117–128. doi: 10.54203/scil.2024.wvj15.

Vlizlo, V. V. (ed.) (2012) Laboratory Methods of Research in Biology, Animal Husbandry and Veterinary Medicine [Laboratorni metody doslidzhen u biolohii, tvarynnytstvi ta veterynarnii medytsyni].  Lviv: Spolom. ISBN 9769666656776. [in Ukrainian].

VRU (Verkhovna Rada Ukrainy) (2006) ‘Law of Ukraine No. 3447-IV of 21.02.2006 ‘About protection of animals from cruel treatment’ [Zakon Ukrainy № 3447-IV vid 21.02.2006 ‘Pro zakhyst tvaryn vid zhorstokoho povodzhennia’], News of the Verkhovna Rada of Ukraine [Vidomosti Verkhovnoi Rady Ukrainy], 27, art. 230. Available at: https://zakon.rada.gov.ua/laws/3447-15. [in Ukrainian].

Youn, S. M. and Choi, S. J. (2022) ‘Food additive zinc oxide nanoparticles: Dissolution, interaction, fate, cytotoxicity, and oral toxicity’, International Journal of Molecular Sciences, 23(11), p. 6074. doi: 10.3390/ijms23116074.

Zalama, E., Karrouf, G., Rizk, A., Salama, B. and Samy, A. (2022) ‘Does zinc oxide nanoparticles potentiate the regenerative effect of platelet-rich fibrin in healing of critical bone defect in rabbits?’, BMC Veterinary Research, 18(1), p. 130. doi: 10.1186/s12917-022-03231-6.

Zeng, X., Wang, Z., Zhao, A., Wu, Y., Wang, Z., Wu, A., Wang, Q., Xia, X., Chen, X., Zhao, W., Li, B., Lu, Z., Lv, Q., Li, G., Zuo, Z., Wu, F., Zhao, Y., Wang, T., Nie, G., Li, S. and Zhang, G. (2025) ‘Zinc nanoparticles from oral supplements accumulate in renal tumours and stimulate antitumour immune responses’, Nature Materials, 24(2), pp. 287–296. doi: 10.1038/s41563-024-02093-7.

Zhang, H., Miao, C., Huo, Z. and Luo, T. (2022) ‘Effects of zinc oxide nanoparticles transformation in sulfur-containing water on its toxicity to microalgae: Physicochemical analysis, photosynthetic efficiency and potential mechanisms’, Water Research, 223, p. 119030. doi: 10.1016/j.watres.2022.119030.