Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume
11, Issue 4, November 2025, Pages 3–11
ISSN 2411-3174 (print version) ISSN 2411-0388
(online version)
EFFECT
OF ZINC CARBONATE NANOPARTICLES SUBCHRONIC INTAKE ON ANTIOXIDANT STATUS OF MALE
RABBITS
Koshevoy V. I. 1,
Naumenko S. V. 1, Bespalova I. I. 2,
Yefimova S. L. 2
1 State
Biotechnological University, Kharkiv, Ukraine, e-mail: koshevoyvsevolod@gmail.com
2 Institute for
Scintillation Materials of the National Academy of Sciences of Ukraine,
Kharkiv, Ukraine
Download
PDF (print version)
Citation for print version: Koshevoy, V. I.,
Naumenko, S. V., Bespalova, I. I. and Yefimova, S. L.
(2025) ‘Effect of zinc carbonate
nanoparticles subchronic intake on antioxidant status of male rabbits’,
Journal for Veterinary Medicine,
Biotechnology and Biosafety, 11(4), pp. 3–11.
Download
PDF (online version)
Citation for online version: Koshevoy, V. I.,
Naumenko, S. V., Bespalova, I. I. and Yefimova, S. L.
(2025) ‘Effect of zinc carbonate
nanoparticles subchronic intake on antioxidant status of male rabbits’,
Journal for Veterinary Medicine,
Biotechnology and Biosafety, 11(4), pp. 3–11. DOI: 10.36016/JVMBBS-2025-11-4-1.
Summary.
An urgent
scientific task is to develop modern and safe zinc-based nanoparticles that can
fulfill rabbits’ need for this essential mineral. This research primarily
focuses on enhancing the bioavailability of zinc and reducing its toxic
properties. To evaluate the antioxidant effect of zinc carbonate nanoparticles,
24 sexually mature male Hiplus rabbits were used, which were randomly
divided into two groups of four animals and three replicates each. The rabbits
in the experimental group were orally administered zinc carbonate nanoparticles
obtained by the co-precipitation method and stabilized with polyvinylpyrrolidone
at a dose of 100 mg/kg body weight for 30 days. Animals in the
control group received distilled water according to a similar procedure. At the
end of the experiment, blood samples were taken from all animals for
biochemical studies. The presence of redox activity of these nanoparticles in
the organism of male rabbits was established: after administration in the
experimental group of animals, a significant decrease in peroxidation markers
was noted: the level of thiobarbiturate-active products by 24.5%, diene
conjugates by 18.7% and lipid hydroperoxides by 16.2% (p < 0.05).
A significant increase in the total antioxidant activity (by 40.2%), the
content of enzymatic and non-enzymatic components of the antioxidant defense
system was confirmed by the expressive antioxidant effect of zinc carbonate
nanoparticles: superoxide dismutase activity by 68.9%, catalase by 18.3%,
glutathione peroxidase by 27.6%, glutathione reductase by 34.6% and reduced
glutathione content by 15.7% (p < 0.05). Thus, it can be argued
that there is an antioxidant effect of zinc carbonate nanoparticles for male
rabbits. The authors of the article consider the study of the effect of these
nanoparticles on the state of sexual function in rabbits, as well as
pharmacokinetic studies, to be prospects for further research
Keywords: bioavailability,
toxicity, blood, biochemical parameters
References:
Abbas, A., Muhammad, S. A.,
Ashar, A, Mehfooz, S. A., Rauf, A., Bakhsh, M.,
Nadeem, T. and Fu, H. (2023) ‘Comparison of the effect of zinc
oxide nanoparticles and extract of Acorus
calamus applied topically on surgical wounds inflicted on the skin of rabbits’,
Polish Journal of Veterinary Sciences, 26(2), pp. 285–293. doi: 10.24425/pjvs.2023.145035.
Abd El-Hack, M. E.,
Ashour, E. A., Aljahdali, N., Zabermawi, N. M., Baset, S. A.,
Kamal, M., Radhi, K. S., Moustafa, M., Algopishi, U.,
Alshaharni, M. O. and Bassiony, S. S. (2024) ‘Does
the dietary supplementation of organic nano-zinc as a growth promoter impact
broiler’s growth, carcass and meat quality traits, blood metabolites and
cecal microbiota?’, Poultry Science, 103(5), p. 103550. doi: 10.1016/j.psj.2024.103550.
Abdelnour, S. A., Abdelaal, M.,
Sindi, R. A., Alfattah, M. A., Khalil, W. A.,
Bahgat, L. B. and Sheiha, A. M. (2025) ‘Physio-metabolic
response, immune function, epigenetic markers, and reproductive performance of
rabbits under environmental stress: The mitigating role of boswellia essential
oil nanoemulsion’, BMC Veterinary Research, 21(1), p. 168. doi: 10.1186/s12917-025-04587-1.
Abdel-Wareth, A. A.,
Al-Kahtani, M. A., Alsyaad, K. M.,
Shalaby, F. M., Saadeldin, I. M.,
Alshammari, F. A., Mobashar, M., Suleiman, M. H., Ali, A. H.,
Taqi, M. O., El-Sayed, H. G. M., El-Sadek, M. S. A.,
Metwally, A. E. and Ahmed, A. E. (2020) ‘Combined
supplementation of nano-zinc oxide and thyme oil improves the nutrient
digestibility and reproductive fertility in the male Californian
rabbits’, Animals, 10(12),
p. 2234. doi: 10.3390/ani10122234.
Abdel-Wareth, A. A. A.,
Amer, S. A., Mobashar, M. and El-Sayed, H. G. M.
(2022) ‘Use of zinc oxide nanoparticles in the growing rabbit diets to
mitigate hot environmental conditions for sustainable production and improved
meat quality’, BMC Veterinary Research, 18(1), p. 354. doi: 10.1186/s12917-022-03451-w.
Abdel-Wareth, A. A. A.,
El-Sayed, H. G. M., Abdel-Warith, A. A., Younis, E. M.,
Hassan, H. A., Afifi, A. S., El-Chaghaby, G. A.,
Rashad, S., Amer, S. A. and Lohakare, J. (2023a)
‘Effects of dietary Acacia nilotica
fruit, zinc oxide nanoparticles and their combination on productive
performance, zinc retention, and blood biochemistry of rabbits’, Animals, 13(20), p. 3296. doi: 10.3390/ani13203296.
Abdel-Wareth, A. A. A.,
Raslan, M. A. H., Ismail, Z. S. H.,
Salem, W. and Lohakare, J. (2023b) ‘Effects of zinc oxide
nanoparticle supplementation on performance, digestibility, and blood
biochemistry of Californian male rabbits under hot climatic conditions’, Biological
Trace Element Research, 201(7),
pp. 3418–3427. doi: 10.1007/s12011-022-03432-y.
Abouzeinab, N. S., Kahil, N.,
Fakhruddin, N., Awad, R. and Khalil, M. I. (2023)
‘Intraperitoneal hepato-renal toxicity of zinc oxide and nickel oxide
nanoparticles in male rats: Biochemical, hematological and histopathological studies’,
EXCLI Journal, 22,
pp. 619–644. doi: 10.17179/excli2023-6237.
Alqahtani, A. N. (2025)
‘Impact of dietary zinc nanoparticles and probiotics on broiler health
and productivity’, Journal of Advanced Veterinary and Animal Research, 12(1), pp. 19–32. doi: 10.5455/javar.2025.l868.
Alrashedi, S. S.,
Almasmoum, H. A. and Eldiasty, J. G. (2024) ‘The
effect of dietary eugenol nano-emulsion supplementation on growth performance,
serum metabolites, redox homeostasis, immunity, and pro-inflammatory responses
of growing rabbits under heat stress’, Open Veterinary Journal, 14(3), pp. 830–839. doi:
10.5455/OVJ.2024.v14.i3.10.
Awad, N. F. S.,
Hashem, Y. M., Elshater, N. S., Khalifa, E.,
Hamed, R. I., Nossieur, H. H., Abd-Allah, E. M.,
Elazab, S. T., Nassan, M. A. and
El-Hamid, M. I. A. (2022) ‘Therapeutic potentials of
aivlosin and/or zinc oxide nanoparticles against Mycoplasma gallisepticum and/or Ornithobacterium
rhinotracheale with a special reference to the effect of zinc oxide
nanoparticles on aivlosin tissue residues: An in vivo approach’, Poultry Science, 101(6), p. 101884. doi: 10.1016/j.psj.2022.101884.
Azeez, S., Fatima, M., Gul, O.,
Rehman, H., Shad, M. A. and Nawaz, H. (2024) ‘Zinc
oxide nanoparticles-doped curcumin-assisted recovery of rheumatoid arthritis
and antioxidant status in experimental rabbits’, BioMedicine, 14(2), pp. 49–59. doi: 10.37796/2211-8039.1446.
Bashar, A. M.,
Abdelnour, S. A., El-Darawany, A. A. and
Sheiha, A. M. (2024) ‘Dietary supplementation of microalgae
and/or nanominerals mitigate the negative effects of heat stress in growing
rabbits’, Biological Trace Element Research, 202(8), pp. 3639–3652. doi: 10.1007/s12011-023-03953-0.
Bashir, S., Awan, M. S.,
Farrukh, M. A., Naidu, R., Khan, S. A.,
Rafique, N., Ali, S., Hayat, I., Hussain, I. and
Khan, M. Z. (2022) ‘In-vivo
(albino mice) and in-vitro
assimilation and toxicity of zinc oxide nanoparticles in food materials’,
International Journal of Nanomedicine, 17, pp. 4073–4085. doi: 10.2147/IJN.S372343.
Bozer, B. D., Dede, A. and
Güven, K. (2024) ‘Green synthesized zinc oxide nanoparticles
with Salvadora persica L. root
extract and their antagonistic activity against oral and health-threatening
pathogens’, Indian Journal of Microbiology, 64(4), pp. 1903–1911. doi: 10.1007/s12088-024-01276-9.
CE (The Council of Europe). (1986) European Convention for the Protection of
Vertebrate Animals Used for Experimental and Other Scientific Purposes.
(European Treaty Series, No. 123). Strasbourg: The Council of Europe.
Available at: https://conventions.coe.int/treaty/en/treaties/html/123.htm.
CEC (The Council of the European Communities)
(2010) ‘Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals used for
scientific purposes’, The Official
Journal of the European Communities, L 276, pp. 33–79.
Available at: http://data.europa.eu/eli/dir/2010/63/oj.
Dahran, N., Abd-Elhakim, Y. M.,
Mohamed, A. A., Abd-Elsalam, M. M., Said, E. N.,
Metwally, M. M., Abdelhamid, A. E., Hassan, B. A.,
Alsieni, M., Alosaimi, M. E., Abduljabbar, M. H. and
El-Shetry, E. S. (2023) ‘Palliative effect of Moringa olifera-mediated zinc oxide
nanoparticles against acrylamide-induced neurotoxicity in rats’, Food
and Chemical Toxicology, 171,
p. 113537. doi: 10.1016/j.fct.2022.113537.
Deguchi, S., Ogata, F.,
Isaka, T., Otake, H., Nakazawa, Y., Kawasaki, N. and
Nagai, N. (2021) ‘Prevention of postprandial hyperglycemia by
ophthalmic nanoparticles based on protamine zinc insulin in the rabbit’, Pharmaceutics, 13(3), p. 375. doi: 10.3390/pharmaceutics13030375.
Ebeid, T. A.,
Aljabeili, H. S., Al-Homidan, I. H., Volek, Z. and
Barakat, H. (2023) ‘Ramifications of heat stress on rabbit
production and role of nutraceuticals in alleviating its negative impacts: An
updated review’, Antioxidants, 12(7), p. 1407. doi: 10.3390/antiox12071407.
El-Saadony, M. T., Fang, G.,
Yan, S., Alkafaas, S. S., El Nasharty, M. A., Khedr, S. A.,
Hussien, A. M., Ghosh, S., Dladla, M.,
Elkafas, S. S., Ibrahim, E. H., Salem, H. M.,
Mosa, W. F., Ahmed, A. E., Mohammed, D. M., Korma, S. A.,
El-Tarabily, M. K., Saad, A. M.,
El-Tarabily, K. A. and AbuQamar, S. F. (2024) ‘Green
synthesis of zinc oxide nanoparticles: Preparation, characterization, and
biomedical applications — A review’, International Journal
of Nanomedicine, 19, pp. 12889–12937.
doi: 10.2147/IJN.S487188.
Elshaer, N., Eldeeb, A. M.,
Aioub, A. A., Hashem, A. S., Ghosh, S.,
Alkeridis, L. A., Alshehri, M. A., Shukry, M.,
Almalki, D. A., Alkhatabi, H. A., Afifi, M., Al-Farga, A.,
Hendawy, M. A. and El-Sobki, A. E. A. (2025)
‘Zinc nanoparticles mitigate azoxystrobin and its
nanoencapsulation-induced hepatic and renal toxicity in rats’, Redox
Report: Communications in Free Radical Research, 30(1), p. 2491318. doi: 10.1080/13510002.2025.2491318.
El-Shobokshy, S. A.,
Abo-Samaha, M. I., Sahwan, F. M.,
El-Rheem, S. M. A., Emam, M. and Khafaga, A. F.
(2023) ‘Implication of apoptosis and oxidative stress in mitigation of
ivermectin long-term hazards by zinc nanoparticles in male rabbits’, Environmental
Science and Pollution Research International, 30(10), pp. 26982–26997. doi: 10.1007/s11356-022-24095-1.
Fatima, A., Zaheer, T.,
Pal, K., Abbas, R. Z., Akhtar, T., Ali, S. and
Mahmood, M. S. (2024) ‘Zinc oxide nanoparticles significant
role in poultry and novel toxicological mechanisms’, Biological Trace
Element Research, 202(1),
pp. 268–290. doi: 10.1007/s12011-023-03651-x.
Fujihara, J. and Nishimoto, N.
(2024) ‘Review of zinc oxide nanoparticles: toxicokinetics, tissue
distribution for various exposure routes, toxicological effects, toxicity
mechanism in mammals, and an approach for toxicity reduction’, Biological
Trace Element Research, 202(1),
pp. 9–23. doi: 10.1007/s12011-023-03644-w.
Gomez-Zavaglia, A., Cassani, L.,
Hebert, E. M. and Gerbino, E. (2022) ‘Green synthesis,
characterization and applications of iron and zinc nanoparticles by
probiotics’, Food Research International, 155, p. 111097. doi: 10.1016/j.foodres.2022.111097.
Gur, T., Meydan, I.,
Seckin, H., Bekmezci, M. and Sen, F. (2022) ‘Green
synthesis, characterization and bioactivity of biogenic zinc oxide
nanoparticles’, Environmental Research, 204(Pt A), p. 111897. doi: 10.1016/j.envres.2021.111897.
Halo, M. Jr., Bułka, K.,
Antos, P. A., Greń, A., Slanina, T.,
Ondruška, Ľ., Tokárová, K.,
Massányi, M., Formicki, G., Halo, M. and
Massányi, P. (2021) ‘The effect of ZnO nanoparticles on
rabbit spermatozoa motility and viability parameters in vitro’, Saudi Journal of Biological Sciences, 28(12), pp. 7450–7454.
doi: 10.1016/j.sjbs.2021.08.045.
Hanini, A., Massoudi, M. E.,
Gavard, J., Kacem, K., Ammar, S. and Souilem, O. (2016)
‘Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles
in rabbit’, Environmental Toxicology and Pharmacology, 45, pp. 321–327. doi: 10.1016/j.etap.2016.06.010.
Hassan, F. A. M.,
Kishawy, A. T. Y., Moustafa, A. and
Roushdy, E. M. (2021) ‘Growth performance, tissue
precipitation, metallothionein and cytokine transcript expression and economics
in response to different dietary zinc sources in growing rabbits’, Journal
of Animal Physiology and Animal Nutrition, 105(5), pp. 965–974. doi: 10.1111/jpn.13550.
Hassan, F. A.,
Elkassas, N. E. M., El-Bltagy, E. A.,
Mohamed, M. S., Mobarez, S., Salim, I. H. and
Abdel-Aal, M. M. (2023) ‘Dietary zinc-chitosan nanoparticles
addition influences on growth performance, apparent total tract digestibility,
carcass indices, and immune function in weaned rabbits’, Animal
Biotechnology, 34(9),
pp. 4819–4827. doi: 10.1080/10495398.2023.2197467.
Hassan, M. U., Guoqin, H.,
Ahmad, N., Khan, T. A., Nawaz, M., Shah, A. N.,
Rasheed, A., Asseri, T. A. Y. and Ercisli, S. (2024)
‘Multifaceted roles of zinc nanoparticles in alleviating heavy metal
toxicity in plants: A comprehensive review and future perspectives’, Environmental
Science and Pollution Research International, 31(52), pp. 61356–61376. doi: 10.1007/s11356-024-35018-7.
Herrera-Rodríguez, M. A., Del
Pilar Ramos-Godinez, M., Cano-Martínez, A.,
Segura, F. C., Ruiz-Ramírez, A., Pavón, N.,
Lira-Silva, E., Bautista-Pérez, R., Thomas, R. S.,
Delgado-Buenrostro, N. L., Chirino, Y. I. and
López-Marure, R. (2023) ‘Food-grade titanium dioxide and zinc
oxide nanoparticles induce toxicity and cardiac damage after oral exposure in
rats’, Particle and Fibre Toxicology, 20(1), p. 43. doi: 10.1186/s12989-023-00553-7.
Kahil, N., Abouzeinab, N. S.,
Hussein, M. A. A. and Khalil, M. I. (2024)
‘Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide
nanoparticles in rats: A systematic review’, Nanotoxicology, 18(7), pp. 583–598. doi:
10.1080/17435390.2024.2407352.
Koshevoy, V., Naumenko, S.,
Skliarov, P., Syniahovska, K., Vikulina, G., Klochkov, V.
and Yefimova, S. (2022) ‘Effect of gadolinium orthovanadate
nanoparticles on male rabbits’ reproductive performance under oxidative
stress’, World’s Veterinary Journal, 12(3), pp. 296–303. doi: 10.54203/scil.2022.wvj37.
Koshevoy, V., Naumenko, S.,
Orobchenko, O. and Bespalova, I. (2023) ‘Acute toxicity of zinc
carbonate nanocrystals on white mice model’ [Hostra toksychnist
nanokrystaliv tsynku karbonatu na modeli bilykh myshei], Scientific
Messenger of Lviv National University of Veterinary Medicine and
Biotechnologies named after S. Z. Gzhytskyj. Series: Veterinary
Sciences [Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi
medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho. Seriia:
Veterynarni Nauky], 25(112),
pp. 123–130. doi: 10.32718/nvlvet11220.
[in Ukrainian].
Koshevoy, V. I.,
Naumenko, S. V., Bespalova, I. I. and
Yefimova, S. L. (2025) ‘Hematotoxicity of zinc carbonate
nanoparticles in the Wistar rat model’, Ukrainian Journal of
Veterinary and Agricultural Sciences,
8(1), pp. 21–26. doi: 10.32718/ujvas8-1.04.
Lee, H. and Park, K. (2019) ‘In vitro cytotoxicity of zinc oxide
nanoparticles in cultured statens seruminstitut rabbit cornea cells’, Toxicological
Research, 35(3),
pp. 287–294. doi: 10.5487/TR.2019.35.3.287.
Malik, A., Alshehri, M. A.,
Alamery, S. F. and Khan, J. M. (2021) ‘Impact of
metal nanoparticles on the structure and function of metabolic enzymes’, International
Journal of Biological Macromolecules,
188, pp. 576–585. doi: 10.1016/j.ijbiomac.2021.08.073.
Masoud, S. R.,
Fathalla, S. I., Shawky, S. M., El-Gendy, H.,
Alakhras, M. A. Z., Alhotan, R. A., Ayyoub, A.,
Selim, S., Al-Otaibi, K. D. and
El-Seidy, A. M. A. (2025) ‘Potential therapeutic effect of
ZnO/CuO nanocomposite as an acaricidal, immunostimulant, and antioxidant in
rabbits’, Veterinary Sciences, 12(4), p. 333. doi: 10.3390/vetsci12040333.
Michalak, I., Dziergowska, K.,
Alagawany, M., Farag, M. R., El-Shall, N. A.,
Tuli, H. S., Emran, T. B. and Dhama, K. (2022)
‘The effect of metal-containing nanoparticles on the health, performance
and production of livestock animals and poultry’, The Veterinary
Quarterly, 42(1),
pp. 68–94. doi: 10.1080/01652176.2022.2073399.
Moasses, Z., Aryan, A.,
Mesbah, F. and Mirzaei, E. (2024) ‘Evaluation of the spatial
arrangement of rabbit hepatocytes based on Voronoi tessellation following
exposure to zinc oxide nanoparticles’, Avicenna Journal of Medical
Biotechnology, 16(3),
pp. 165–173. doi: 10.18502/ajmb.v16i3.15742.
NasrEldeen, M. S.,
Ragab, R. S. A., Aboelmaaty, A. M. and
Saudi, E. M. (2025) ‘Effect of selenium and zinc nanoparticles
supplementations on testicular blood flow, semen, and reproductive hormones in
Egyptian native goats subjected to ambient heat stress’, Domestic
Animal Endocrinology, 92,
p. 106941. doi: 10.1016/j.domaniend.2025.106941.
Naumenko, S., Koshevoy, V.,
Matsenko, O., Miroshnikova, O., Zhukova, I. and
Bespalova, I. (2023) ‘Antioxidant properties and toxic risks of
using metal nanoparticles on health and productivity in poultry’, Journal
of World`s Poultry Research, 13(3),
pp. 292–306. doi: 10.36380/jwpr.2023.32.
Nawaz, H., Naseem, I.,
Rehman, T. and Nawaz, M. (2021) ‘Optimization of zinc oxide
nanoparticle-catalyzed in vitro bilirubin
photolysis and in vivo treatment of
Hyperbilirubinemia’, Nanomedicine, 16(16), pp. 1377–1390. doi: 10.2217/nnm-2021-0036.
Nelogi, S., Puranik, N.,
Chindak, S., Chowdhary, R. and Naik, V. (2025) ‘Zinc
nanoparticles induced eggshell collagen membrane used for guided bone
regeneration: A novel approach in rabbit models’, Odontology, 113(3), pp. 1029–1039.
doi: 10.1007/s10266-024-01040-x.
Obaid, H. S., Kamil, H.,
Abdul, K. S., Judi, H. K., Akrami, S., Saki, M.,
Adil, H. M. and Fares, H. D. (2024) ‘In vivo and in vitro efficacy of the ithmid kohl/zinc-oxide nanoparticles,
ithmid kohl/Aloe vera, and zinc-oxide
nanoparticles/Aloe vera for the
treatment of Bacterial endophthalmitis’, Scientific Reports, 14(1), p. 15746. doi: 10.1038/s41598-024-66341-1.
Parashar, S., Raj, S.,
Srivastava, P. and Singh, A. K. (2024) ‘Comparative
toxicity assessment of selected nanoparticles using different experimental
model organisms’, Journal of Pharmacological and Toxicological Methods, 130, p. 107563. doi: 10.1016/j.vascn.2024.107563.
Park, E. J., Jeong, U.,
Yoon, C. and Kim, Y. (2017) ‘Comparison of distribution and
toxicity of different types of zinc-based nanoparticles’, Environmental
Toxicology, 32(4),
pp. 1363–1374. doi: 10.1002/tox.22330.
Pei, X., Jiang, H., Li, C.,
Li, D. and Tang, S. (2023) ‘Oxidative stress-related canonical
pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide
nanoparticles’, Journal of Hazardous Materials, 442, p. 130039. doi: 10.1016/j.jhazmat.2022.130039.
Rahman, H. S.,
Othman, H. H., Abdullah, R., Edin, H. A. S. and
Al-Haj, N. A. (2022) ‘Beneficial and toxicological aspects of
zinc oxide nanoparticles in animals’, Veterinary Medicine and Science, 8(4), pp. 1769–1779.
doi: 10.1002/vms3.814.
Saha, S., Roy, S., Jana, S.,
Sarkar, T., Chanda, S., Datta, P., Chakraborty, B.,
Mondal, S., Halder, S., Kundu, B. and Nandi, S. K.
(2024) ‘Zinc oxide nanoparticles incorporated in poly-hydroxyethyl
methacrylate/acrylamide membrane trigger the key events of full-thickness wound
healing in a rabbit model’, Journal of Biomedical Materials Research.
Part B, Applied Biomaterials,
112(12), p. e35510. doi: 10.1002/jbm.b.35510.
Salimi, A., Rahimi, H. R.,
Forootanfar, H., Jafari, E., Ameri, A. and Shakibaie, M.
(2019) ‘Toxicity of microwave-assisted biosynthesized zinc nanoparticles
in mice: A preliminary study’, Artificial Cells, Nanomedicine, and
Biotechnology, 47(1),
pp. 1846–1858. doi: 10.1080/21691401.2019.1611592.
Serhiienko, V., Koshevoy, V.,
Naumenko, S., Kotyk, B., Ilina, O., Shchepetilnikov, Y.,
Makhotina, D. and Marakhovskyi, I. (2025) ‘Oxidative stress
markers, antioxidant balance, and protein metabolism in dogs with acute
prostatitis’, World’s Veterinary Journal, 15(1), pp. 167–175. doi:
10.54203/scil.2025.wvj19.
Shokri, M., Kharaziha, M.,
Ahmadi, T. H., Dalili, F., Mehdinavaz, A. R.,
Ghiassi, S. R. and Baghaban, E. M. (2024)
‘Melatonin-loaded mesoporous zinc- and gallium-doped hydroxyapatite
nanoparticles to control infection and bone repair’, Biomaterials
Science, 12(16),
pp. 4194–4210. doi: 10.1039/d4bm00377b.
Simmonds, R. C. (2017)
‘Chapter 4. Bioethics and animal use in programs of research,
teaching, and testing’, in Weichbrod, R. H.,
Thompson, G. A. and Norton, J. N. (eds.) Management of
Animal Care and Use Programs in Research, Education, and Testing. 2nd ed.
Boca Raton: CRC Press, pp. 35–62. doi: 10.1201/9781315152189-4.
Swain, P. S.,
Rao, S. B. N., Rajendran, D., Dominic, G. and
Selvaraju, S. (2016) ‘Nano zinc, an alternative to conventional zinc
as animal feed supplement: A review’, Animal Nutrition, 2(3), pp. 134–141. doi: 10.1016/j.aninu.2016.06.003.
Tverdokhlib, Y., Naumenko, S.,
Koshevoy, V., Miroshnikova, O., Syniahovska, K.,
Kovalova, L. and Hryshchuk, H. (2024) ‘Effect of different
methods of ovulation induction on sex hormones in serum, and meat of rabbit
does’, World’s Veterinary Journal, 14(1), pp. 117–128. doi: 10.54203/scil.2024.wvj15.
Vlizlo, V. V. (ed.) (2012) Laboratory
Methods of Research in Biology, Animal Husbandry and Veterinary Medicine
[Laboratorni metody doslidzhen u biolohii, tvarynnytstvi ta veterynarnii
medytsyni]. Lviv: Spolom. ISBN 9769666656776. [in Ukrainian].
VRU (Verkhovna Rada Ukrainy) (2006) ‘Law
of Ukraine No. 3447-IV of 21.02.2006 ‘About protection of animals
from cruel treatment’ [Zakon Ukrainy № 3447-IV vid 21.02.2006
‘Pro zakhyst tvaryn vid zhorstokoho povodzhennia’], News of the
Verkhovna Rada of Ukraine [Vidomosti Verkhovnoi Rady Ukrainy], 27,
art. 230. Available at: https://zakon.rada.gov.ua/laws/3447-15.
[in Ukrainian].
Youn, S. M. and
Choi, S. J. (2022) ‘Food additive zinc oxide nanoparticles:
Dissolution, interaction, fate, cytotoxicity, and oral toxicity’, International
Journal of Molecular Sciences, 23(11),
p. 6074. doi: 10.3390/ijms23116074.
Zalama, E., Karrouf, G.,
Rizk, A., Salama, B. and Samy, A. (2022) ‘Does zinc oxide
nanoparticles potentiate the regenerative effect of platelet-rich fibrin in
healing of critical bone defect in rabbits?’, BMC Veterinary Research, 18(1), p. 130. doi: 10.1186/s12917-022-03231-6.
Zeng, X., Wang, Z., Zhao, A.,
Wu, Y., Wang, Z., Wu, A., Wang, Q., Xia, X.,
Chen, X., Zhao, W., Li, B., Lu, Z., Lv, Q.,
Li, G., Zuo, Z., Wu, F., Zhao, Y., Wang, T.,
Nie, G., Li, S. and Zhang, G. (2025) ‘Zinc nanoparticles
from oral supplements accumulate in renal tumours and stimulate antitumour immune
responses’, Nature Materials,
24(2), pp. 287–296. doi: 10.1038/s41563-024-02093-7.
Zhang, H., Miao, C., Huo, Z.
and Luo, T. (2022) ‘Effects of zinc oxide nanoparticles
transformation in sulfur-containing water on its toxicity to microalgae:
Physicochemical analysis, photosynthetic efficiency and potential mechanisms’,
Water Research, 223,
p. 119030. doi: 10.1016/j.watres.2022.119030.
